

Association between Porphyromonas gingivalis and Vitamin D

The relationship between **Porphyromonas gingivalis** and **Vitamin D** is well-established and multifaceted, with compelling evidence supporting their association in periodontal disease development and progression.

Vitamin D's Direct Antimicrobial Effects on P. gingivalis

Vitamin D demonstrates potent antimicrobial properties against P. gingivalis through several mechanisms [1] [2] [3]. The active form of vitamin D, 1,25-dihydroxyvitamin D $_3$ (calcitriol), exhibits direct inhibitory effects on P. gingivalis growth, with minimal inhibitory concentrations ranging from 3.125 to 6.25 μ g/mL [3]. This antimicrobial activity extends beyond simple growth inhibition - vitamin D significantly reduces the expression of critical virulence factor genes in P. gingivalis, including adhesins (fimA, hagA, and hagB) and proteinases (rgpA, rgpB, and kgp) [3]. These virulence factors are essential for bacterial colonization, host defense deactivation, and tissue destruction.

Vitamin D enhances bacterial clearance through autophagy promotion [1] [2] [4]. In U937-derived macrophages, calcitriol promotes the colocalization of P. gingivalis with autophagosome and lysosome markers, effectively degrading live bacteria through the autophagy process [1] [2]. This mechanism is particularly significant as it provides a cellular defense strategy against intracellular bacterial persistence.

Vitamin D's Role in Enhancing Innate Immune Defense

Vitamin D stimulates the production of antimicrobial peptides that specifically target P. gingivalis $^{[5]}$ $^{[6]}$ $^{[7]}$ $^{[8]}$. The active form of vitamin D induces the expression of cathelicidin LL-37, a crucial antimicrobial peptide that exhibits broad-spectrum antibacterial activity against periodontal pathogens $^{[7]}$ $^{[8]}$. LL-37 demonstrates significant antimicrobial efficacy against gramnegative bacteria, including P. gingivalis, and plays a vital role in the innate immune defense of the oral cavity $^{[6]}$.

Vitamin D also promotes the production of defensins and other antimicrobial compounds $^{[5]}$. Studies show that vitamin D treatment leads to significant upregulation of human β -defensin 3 expression in gingival epithelial cells infected with P. gingivalis, while simultaneously reducing pro-inflammatory cytokine production $^{[5]}$. This dual action - enhancing antimicrobial defense while reducing inflammation - represents a sophisticated host response mechanism.

Clinical Evidence of the Association

Systematic reviews and meta-analyses consistently demonstrate lower vitamin D levels in periodontitis patients $\frac{[10]}{[11]}$ $\frac{[12]}{[12]}$. A comprehensive meta-analysis found that patients with chronic periodontitis had significantly lower serum 25(OH)D levels compared to healthy controls (pooled mean difference = -6.80, 95% CI: -10.59 to -3.02) $\frac{[10]}{[12]}$. This association is particularly pronounced when measured using liquid chromatography-mass spectrometry, the most accurate measurement method $\frac{[10]}{[10]}$.

Vitamin D supplementation as adjunctive therapy shows clinical benefits [11] [13] [14]. Multiple studies demonstrate that vitamin D supplementation combined with scaling and root planing significantly improves clinical attachment levels and reduces probing pocket depths compared to mechanical treatment alone [11] [13]. The evidence suggests that vitamin D supplementation enhances periodontal healing and may reduce the risk of disease progression [13] [14].

Molecular Mechanisms and Pathways

Vitamin D influences P. gingivalis through multiple cellular pathways [3] [5] [15]. The vitamin D receptor (VDR) mediates many of these effects, and genetic polymorphisms in the VDR gene have been associated with increased susceptibility to periodontitis [16] [17] [18]. Vitamin D binding to VDR regulates gene expression patterns that enhance antimicrobial defense while modulating inflammatory responses.

The vitamin D-P. gingivalis interaction involves complex inflammatory modulation $^{[5]}$ $^{[15]}$. Vitamin D treatment significantly reduces the production of pro-inflammatory cytokines (TNF- α , IL-8, IL-12) in P. gingivalis-infected cells while enhancing the production of protective antimicrobial peptides $^{[5]}$. This balanced response helps maintain tissue homeostasis while eliminating bacterial threats.

Clinical Implications and Therapeutic Potential

Vitamin D deficiency creates a permissive environment for P. gingivalis proliferation [19] [20]

[9]. Low vitamin D levels reduce salivary flow rate and buffer capacity, disrupt normal microflora colonization, and decrease secretory immunoglobulin A production [20]. These changes create favorable conditions for pathogenic bacteria like P. gingivalis to establish and maintain infection.

Therapeutic interventions targeting this association show promise [7] [21] [14]. Topical application of vitamin D compounds, particularly when combined with histone deacetylase inhibitors like sodium butyrate, enhances antimicrobial activity against P. gingivalis in laboratory studies [7] [21]. Clinical trials using vitamin D supplementation as adjunctive therapy demonstrate improved treatment outcomes, though optimal dosing and duration remain areas of active research [14] [22].

The association between P. gingivalis and vitamin D represents a crucial intersection of microbial pathogenesis and host immune defense. Vitamin D's multifaceted role in combating P. gingivalis infection through direct antimicrobial effects, enhanced autophagy, and stimulation of innate immune responses provides a compelling rationale for considering vitamin D status in periodontal disease prevention and treatment strategies.

- 1. https://onlinelibrary.wiley.com/doi/abs/10.1111/odi.13696
- 2. https://pubmed.ncbi.nlm.nih.gov/33098722/
- 3. https://pubmed.ncbi.nlm.nih.gov/26297053/
- 4. https://pmc.ncbi.nlm.nih.gov/articles/PMC9283780/
- 5. https://pubmed.ncbi.nlm.nih.gov/28384529/
- 6. https://pmc.ncbi.nlm.nih.gov/articles/PMC9872194/
- 7. https://pmc.ncbi.nlm.nih.gov/articles/PMC10986367/
- 8. https://journals.asm.org/doi/10.1128/iai.00099-11
- 9. https://www.nassaucountyperiodontist.com/vitamin-d-deficiency-on-periodontal-health
- 10. https://pubmed.ncbi.nlm.nih.gov/32708032/
- 11. https://pubmed.ncbi.nlm.nih.gov/37312090/
- 12. https://pmc.ncbi.nlm.nih.gov/articles/PMC7468917/
- 13. https://pmc.ncbi.nlm.nih.gov/articles/PMC9377921/
- 14. https://www.mdpi.com/2072-6643/12/10/2940
- 15. https://pmc.ncbi.nlm.nih.gov/articles/PMC7891446/
- 16. https://pubmed.ncbi.nlm.nih.gov/15455736/
- 17. https://asdj.journals.ekb.eg/article_140027_ca0fb5c6da57fd62d9dc808caf30ea71.pdf
- 18. https://www.spandidos-publications.com/10.3892/br.2022.1518
- 19. https://pubmed.ncbi.nlm.nih.gov/36537578/
- 20. https://www.biomedscijournal.com/articles/abse-aid1033.php
- 21. https://www.frontiersin.org/journals/oral-health/articles/10.3389/froh.2024.1378566/full
- 22. https://onlinelibrary.wiley.com/doi/full/10.1002/kjm2.12726