doi: 10.21873/anticanres.17474

Review

# Umbrella Review on the Relationship Between Vitamin D Intake and Cancer

MATTHIAS SCHÖMANN-FINCK<sup>1</sup>, THOMAS VOGT<sup>2</sup> and JÖRG REICHRATH<sup>2</sup>

#### **Abstract**

Cancer is a major public health problem and the second leading cause of mortality in the European Union. Vitamin D deficiency has been linked to cancer via several pathways. However, umbrella reviews on the extra-skeletal effects of vitamin D have largely overlooked its connection to cancer. This review presents an overview of the relationship between vitamin D intake (nutritional and/or supplementation) and five major types of cancer (breast, colorectal, lung, pancreatic, and prostate cancer). The findings indicate that vitamin D intake may have a preventive effect on breast, colorectal, and lung cancer and may reduce colorectal cancer mortality. However, results for other cancers were inconsistent, and no data were available on the impact of vitamin D intake on pancreatic and lung cancer mortality. While there is some evidence suggesting potential benefits of vitamin D intake, most reviews are based on observational studies, limiting conclusions about causality. Additionally, methodological challenges related to vitamin D metabolism and study designs contribute to the inconclusive nature of the data. Further research is needed to clarify the role of vitamin D intake in cancer prevention and management.

**Keywords:** Umbrella review, vitamin D, vitamin D intake, vitamin D supplementation, pancreatic cancer, breast cancer, lung cancer, prostate cancer, colorectal carcinoma, review.

# Introduction

Cancer is a major public health problem and the second leading cause of mortality in the countries of the European Union, accounting for 22 percent of all deaths in 2021 (1). Data from the "Global Burden of Disease Project" show a

25 percent increase in global cancer mortality from 2007 to 2017, with certain countries (e.g., Denmark or France) experiencing a transition in which cancer became the leading cause of death (1, 2). This shift is largely attributed to the aging populations in Western countries, as age is one of the most important risk factors for cancer. Furthermore,

Matthias Schömann-Finck, Deutsche Hochschule für Prävention und Gesundheitsmanagement, Hermann-Neuberger-Straße 3, 66123 Saarbrücken, Germany. Tel: +49 6816855219, e-mail: m-schoemann-finck@dhfpg-bsa.de

Received December 16, 2024 | Revised January 27, 2025 | Accepted January 28, 2025



This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

©2025 The Author(s). Anticancer Research is published by the International Institute of Anticancer Research.

<sup>&</sup>lt;sup>1</sup>German University of Applied Sciences for Prevention and Health Management, Saarbrücken, Germany;

<sup>&</sup>lt;sup>2</sup>Department of Dermatology, The Saarland University Hospital, Homburg, Germany

advanced age is not only a major risk factor for cancer but is also associated with a higher prevalence of vitamin D deficiency (3, 4). A substantial body of scientific literature has examined the potential beneficial effects of vitamin D in relation to cancer, with the vitamin D-cancer hypothesis first proposed as early as 1980 (5). Since the seminal work of Garland and Garland (5), ecological studies have shown that elevated 25(OH)D levels or augmented UVB radiation (which leads to increased dermal vitamin D synthesis) are inversely related to cancer incidence and mortality. These observations are supported by findings from in vitro and in vivo studies, which show several mechanisms by which vitamin D regulates cellular functions implicated in cancer development (cell growth, differentiation, adhesion, and apoptosis). Additionally, Vitamin D plays a role in indirect (i.e., effects on the tumor microenvironment and immunomodulation) tumor suppression mechanisms (6-10). Despite these positive aspects, it is important to note the widespread criticism of recent vitamin D supplementation trials, such as the VIDA- or the VITALtrials [e.g., Lips et al. (11), Sluyter et al. (12) or Fassio et al. (13)]. In the light of this controversy, it is vital to investigate further the influence of vitamin D, and particularly vitamin D intake, on cancer.

Vitamin D is a fat-soluble vitamin that is synthesized in the epidermis through the energy of ultraviolet radiation B (UV-B). Alternatively, it can be obtained via diet or supplements. The dermal synthesis is far more important than the pathway via nutrition or supplements. However, several large groups are at risk of vitamin D deficiency due to insufficient exposure to UV-B radiation [e.g., elderly (4) or non-white (14) populations in northern countries]. Therefore, this paper focuses on vitamin D intake as a means to elevate vitamin D levels. Calcidiol [25(OH)D], the circulating form of vitamin D, is hydroxylated in the liver from vitamin D2 (from food/supplements) or vitamin D3 (from food/supplements or dermal synthesis). The 25(OH)D level is used as an approximation of the vitamin D level. However, the active form of vitamin D is 1,25(OH)D(calcitriol), which is hydroxylated from calcidiol in the kidneys. Additionally 1,25(OH)D is synthesized locally in

tissues that express CYP27B1-hydroxylase (15). 1,25(OH)D exerts its biological effects by binding to the nuclear vitamin D receptor (VDR). The VDR influences target genes involved in intracellular signaling pathways that are mentioned above (7, 8, 10).

Back in 2011, Linseisen *et al.* (16) provided a comprehensive overview on vitamin D and cancer. Their findings were inconclusive, with results ranging from no influence of vitamin D on prostate carcinoma to a possible beneficial effect of vitamin D on colorectal carcinoma. Since then, research on the extra-skeletal effects of vitamin D has grown, but the most recent umbrella reviews on these effects did not focus on cancer (17-19). Therefore, it is necessary to summarize the current evidence on vitamin D and its relationship with cancer, especially regarding vitamin D intake, as oral vitamin D intake is a simple and cost-effective way to elevate deficient 25(0H)D blood levels to recommended levels (20, 21). Achieving these recommendations might help address the increasing number of cancer cases and related deaths.

This umbrella review aimed to provide an update on the association between vitamin D intake and the incidence and mortality of five of the most important cancers in industrialized countries like Germany (breast, prostate, pancreatic, colorectal, and lung cancer) (22, 23). The results of the umbrella review on the association between 25(OH)D levels and the five cancers mentioned above have been reported elsewhere (24).

## **Materials and Methods**

An umbrella review was drafted to provide an overview of the association between vitamin D and the incidence and mortality of cancer. Umbrella reviews are used to summarize the scientific evidence of a given research area; they are considered as high quality of evidence, as they incorporate the results of several systematic reviews (25-27). The study protocol followed the PRISMA checklist (28). This checklist was developed for conducting systematic reviews (SR), therefore some of the items were modified [PRISMA items 12-15, (28)]. The protocol was registered at the International

Prospective Register of Systematic Reviews database (PROSPERO; registration number CRD42021244758; date of registration: 06/21/21). The literature search for the umbrella review was structured using the PICOS framework (29), focusing on populations at risk for the aforementioned cancers or patients with these cancer, interventions involving vitamin D intake (through food or supplements) and the measurement of 25(OH)D levels (24), and outcomes related to cancer incidence or mortality. Eligible study designs included systematic reviews (with or without meta-analyses) that incorporated at least two randomized controlled trials (RCTs) or cohort studies with prospective designs. Additional inclusion criteria were limited to studies involving adult populations, published in English or German, and dated between 2010 and 2020.

Two databases were searched for eligible studies (PubMed in December 2020 and Cochrane Library in February 2021). A complementary hand search of reference lists of the included reviews and of the excluded narrative reviews was also conducted.

The relevant data were extracted from the eligible reviews and transferred into separate tables for each of the five cancers. The key data were: author(s), publication year, study type, investigation period, study population, exposition(s), outcome(s), calculated effect estimates, estimates for heterogeneity, subgroup analyses, included single studies, estimates for publication bias. The results are presented in qualitative form, as the umbrella review did include not only meta-analyses but also reviews with qualitative statements. Therefore, summary risk estimates were not computed.

The evidence of the results was rated with the Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence chart from 2009 (30) and the methodological quality of the included reviews was assessed by using the AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews) checklist (31). This instrument can be utilized to evaluate reviews derived from both RCTs and observational studies, therefore it is appropriate for the present review. The AMSTAR 2 checklist uses 16 items ("domains") to rate systematic reviews. Seven domains are

considered "critical" for the methodological quality of a review. The critical domains are domains 2 ("Protocol registered before commencement of the review"), 4 ("Adequacy of the literature search"), 7 ("Justification for excluding individual studies"), 9 ("Risk of bias from individual studies being included in the review"), 11 ("Appropriateness of meta-analytical methods"), 13 ("Consideration of risk of bias when interpreting the results of the review"), and 15 ("Assessment of presence and likely impact of publication bias"). The methodological quality of a review can be rated by counting the weaknesses in the critical and non-critical domains. AMSTAR 2 describes four categories: "High" quality (no or one non-critical weakness), "Moderate" quality (more than one non-critical weakness), "Low" quality (one critical flaw with or without non-critical weaknesses), or "Critically low" quality (more than one critical flaw with or without non-critical weaknesses) (31).

#### Results

The search retrieved 182 articles from PubMed and three from the Cochrane Library. In addition, the manual search identified 57 articles. After the screening of titles and abstracts, followed by a review of potentially eligible full texts, 21 articles on vitamin D intake were included in the qualitative synthesis (Table I). Twenty additional reviews focused only on the relation between 25(OH)D level and cancer; these were not included in this article but are presented elsewhere (24).

*Breast cancer.* The results related to breast cancer are presented in Table II. Six SR with meta-analyses (32-37) were included in this section of the umbrella review.

Just one of five reviews that analyzed the association between vitamin D intake and breast cancer incidence shows significant inverse associations when comparing the lowest *vs.* highest levels of vitamin D intake with an odds ratio (OR) of 0.91 (95% confidence interval (CI)=0.85-0.97) (32). However, no statement on causality can be made, as this review only included observational

Table I. Summary of literature extraction for selected cancer types.

|                                                   | Breast cancer | Prostate cancer | Pancreatic cancer | Colorectal cancer | Lung cancer |
|---------------------------------------------------|---------------|-----------------|-------------------|-------------------|-------------|
| Articles for screening (after duplicates removed) | 90            | 52              | 18                | 69                | 17          |
| Retrieved full texts (after screening)            | 40            | 18              | 5                 | 40                | 11          |
| Included in qualitative synthesis                 | 14            | 11              | 3                 | 15                | 10          |
| Reports on vitamin D intake                       | 6             | 4               | 3                 | 6                 | 2           |

Table II. Summary of results on the association between vitamin D intake and breast cancer.

| Incidence                                                  | Mortality                                     |
|------------------------------------------------------------|-----------------------------------------------|
| 5 reviews included (32-36) (5 with meta-analyses)          | 1 review included (37) (1 with meta-analyses) |
| 1 meta-analysis (32) shows significant inverse association | Review (37) reports inconsistent results      |

Table III. Summary of results on the association between vitamin D intake and prostate cancer.

| Incidence                                     | Mortality                                              |
|-----------------------------------------------|--------------------------------------------------------|
| 1 review included (40) (1 with meta-analysis) | 3 reviews included (38, 39, 41) (2 with meta-analyses) |
| Meta-analysis (40) reports no association     | Meta-analyses and review report no association         |

studies. The four other reviews do not show significant associations, but several of them show trends towards inverse associations, with relative risks or odds ratios below 1 and upper limits of the 95%CI close to 1 (33-36).

For breast cancer mortality and survival only the SR with meta-analysis by Kanellopoulou *et al.* was available (37). This meta-analysis provided inconclusive results. A significant risk reduction was calculated for the highest *vs.* the lowest vitamin D intake and the overall mortality of patients with breast cancer (RR=0.85; 95%CI=0.72-0.99), but not for cancer specific mortality (RR=0.65; 95%CI=0.30-1.42).

*Prostate cancer.* The results related to prostate cancer are presented in Table III. Four reviews [3 SR with meta-analyses (38-40), and one SR without meta-analysis (41)] were included in this section of the umbrella review. The only meta-analysis that analyzed the association between vitamin D intake and prostate cancer incidence showed no

significant association for an intake of 1,000 IU/d (40). This was consistent across both case-control studies (OR=0.83; 95%CI=0.28-2.43) and prospective, including nested case-control and cohort studies (RR=1.14; 95%CI=0.99-1.31).

Regarding prostate cancer mortality, all three reviews on vitamin D intake (38, 39, 41) provided inconclusive results about prostate cancer specific mortality and the overall mortality of patients with prostate cancer. This is due to the inconsistent results of the three RCTs (42-44), which are included in all three reviews.

*Pancreatic cancer.* The results for pancreatic cancer are presented in Table IV. Three reviews (all three with meta-analyses) were included in this section of the umbrella review (45-47). All three meta-analyses about the association between vitamin D intake and pancreatic cancer showed no associations (45-47). Only the subgroup analysis of prospective studies by Liu *et al.* (46) showed an inverse dose-response relationship (RR=0.75 per 10  $\mu$ g/d,

Table IV. Summary of results on the association between Vitamin D intake and pancreatic cancer.

| Incidence                                                                                                                        | Mortality           |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 3 reviews included (45-47) (3 with meta-analyses)                                                                                | No reviews included |
| 3 meta-analyses (45-47) report no association, 1 subgroup analysis (46) with trend towards protective dose-response relationship |                     |

Table V. Summary of results on the association between vitamin D intake and colorectal cancer.

| Incidence                                                                                                         | Mortality                                                |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 5 reviews included (48-52) (5 with meta-analyses)                                                                 | 1 review included (53) (1 with meta-analysis)            |
| 3 meta-analyses (49-51) show significant inverse associations, 2 meta-analyses (48, 52) with inconsistent results | Meta-analysis (53) shows significant inverse association |

Table VI. Summary of results on the association between vitamin D intake and lung cancer.

| Incidence                                                  | Mortality           |  |
|------------------------------------------------------------|---------------------|--|
| 2 reviews included (54, 55) (2 with meta-analyses)         | No reviews included |  |
| 1 meta-analysis (54) shows significant inverse association |                     |  |

95%CI=0.60-0.93). No reviews about vitamin D intake and pancreatic cancer mortality met the inclusion criteria of this umbrella review.

Colorectal cancer: The results related to colorectal cancer are presented in Table V. Six reviews with meta-analyses were included in this section of the umbrella review (48-53). Three reviews with meta-analyses reported significant inverse associations between vitamin D intake (overall, nutritional, supplementation) and colorectal cancer incidence (49-51). Huang et al. (49) and Ma et al. (51) showed a possible risk reduction for overall vitamin D intake [RR=0.81; 95%CI=0.74-0.89 (49); RR=0.87; 95%CI=0.77-0.99 (51)]. Huang et al. further showed significant inverse associations for nutritional vitamin D intake (RR=0.88; 95%CI=0.81-0.95) and vitamin D supplementation (RR=0.87; 95%CI=0.77-0.99) (49). Liu et al. (50) compared the highest and lowest vitamin D supplementation and showed a significant inverse association regarding colorectal

cancer incidence (RR=0.88; 95%CI=0.80-0.96). However, no statement on causality can be made, as the reviews included predominantly observational studies. The other two meta-analyses showed significant associations only in subgroup analyses: Heine-Bröring *et al.* for supplemental vitamin D intake (significant dose-response relation per 100 mg/d) (48) and Touvier *et al.* for overall vitamin D intake (highest *vs.* lowest) and nutritional vitamin D intake (significant dose-response relation per 100 IU/d) (52).

The only meta-analysis on vitamin D intake and mortality in this section showed a significant association between vitamin D supplementation and colorectal cancer mortality (overall and cancer specific) (53). This meta-analysis included only RCTs, which results in an evidence level of 1a.

Lung cancer. The results related to lung cancer are presented in Table VI. Two reviews with meta-analyses were included in this section of the umbrella review (54,

55). One review including a meta-analysis reported a significant inverse association between nutritional vitamin D intake and lung cancer incidence (RR=0.854; 95%CI=0.741-0.984) (54). Another review did not show a significant association between overall vitamin D intake and lung cancer (55). No reviews regarding vitamin D intake and lung cancer mortality met the inclusion criteria of this umbrella review.

Methodological quality. The rating of the methodological quality of the included reviews revealed shortcomings in critical domains of the AMSTAR 2 tool for most of the included reviews. Only four reviews were rated as "moderate" (45, 47) or "high" quality (39, 53). The majority of the reviews were rated as "low" (41, 46, 48) or even "critically low" (32-38, 40, 49-52, 54, 55).

## **Discussion**

This umbrella review provides an overview on the broad field of research on vitamin D intake and five of the most important cancer types. The results show that vitamin D intake might help prevent breast, colorectal and lung cancer, and reduce colorectal cancer mortality. However, several aspects require further consideration. It is important to point out that this review distinguishes between different types of cancer and does not treat "cancer" as one disease [as performed, for example, by Sluyter et al. (56)]. This distinction is important because there are differences in the evidence regarding the various types of cancer. In particular, significant data gaps exist, as no systematic reviews could be found exploring the connection between vitamin D intake and pancreatic and lung cancer mortality. This umbrella review clearly shows knowledge gaps about the influence of vitamin D intake on cancer. Apart from the two sub-sections without data, other sub-sections are supported by a small number of reviews or reviews with a limited number of included studies (or both), e.g., the only review on mortality and colorectal cancer by Vaughan-Shaw et al. (53) includes just 5 RCTs with 815 cases in total. Another problem in assessing the association between

vitamin D intake and cancer arises from the fact that the reviews forming the basis of the umbrella review often have varying focuses on vitamin D intake. Some of these reviews examine dietary intake (33, 34, 45, 49, 52, 54), while others assess supplementation (33, 34, 37-39, 41, 48-50, 52, 53), and still others include both aspects and study vitamin D intake in general (32-36, 40, 46, 47, 49, 51, 52, 55). Moreover, most reviews show inconclusive results regarding vitamin D intake and cancer incidence or mortality. Only six reviews show significant inverse associations (32, 49-51, 53, 54). Even in these cases it is not possible to make statements about a causal relationship between vitamin D intake and cancer because most of the studies included in the various reviews are observational studies [the only exception is the review by Vaughan-Shaw et al. (53) that includes only RCTs]. Furthermore, metaanalyses of observational studies are criticized by several authors because of the wide range of epidemiological methods, study designs, different adjustment of confounders, etc. (57, 58). The reviews included in the study also encounter these issues, thereby complicating the comparison of their results. This in turn affects the validity of the umbrella review as a whole.

Apart from these problems regarding the different study design(s), studies on vitamin D intake face additional challenges based on the vitamin D metabolism. First, due to the parallelism of cutaneous synthesis by UV-B radiation and the intake of vitamin D via food or supplements, it is difficult to determine the exact influence of the exogenous vitamin D intake. For this reason, it is not possible to give recommendations for vitamin D intake to reduce the incidence of cancer or to reduce cancer mortality. In order to obtain information on the level of such recommendations, it would be important to design studies with participants less interfered by sun exposure (such as living in areas at a high latitude) as proposed by Zheng et al. (59). Second, as 25(OH)D levels are recommend to be in the range between 50 and 75 nmol/l (20-30 ng/ml) (60, 61), it does not seem necessary to increase 25(OH)D levels to or above the upper threshold of this range to achieve additional health gains. However,

this fact is often ignored in vitamin D supplementation studies and subjects without vitamin D deficiency are regularly included in studies on vitamin D intake. This issue is discussed by several authors (11, 13, 59, 62) and it might be a reason for the weak results regarding vitamin D intake and cancer. Third, a further problem arises from supplementation studies that use low doses of vitamin D [e.g. Chlebowski et al. used 400 IU/d (63)]. This is criticized by some of the included reviews (32, 33). Mohr et al. suggest doses of 1,000 IU/day as appropriate, newer studies like Kralova et al. show that a dose of 2,000 IU/day seems to be sufficient to raise and stabilize the 25(OH)D serum level in the recommended range above 75 nmol/l (60, 64).

In regard to the use of the AMSTAR 2 tool (31) it has to be stated, that most reviews were rated as "low" or "critically low". This further reduces the credibility of the included reviews. Finally, the umbrella review might have missed some relevant reviews as the inclusion criteria did not made specifications on nested case control studies, which are case control studies by name but follow a prospective approach (65). This section shows that the topic of vitamin D intake and cancer drives the umbrella review approach to its limit and that various limitations must be taken into account when interpreting the results of this umbrella review.

#### Conclusion

The prevention of 25(OH)D deficiency is an important component of health (60, 61). For most of the five cancers studied, adequate 25(OH)D levels imply a protective influence on incidence, and even more so on mortality (24). In contrast to the observations on 25(OH)D levels, this article on vitamin D intake shows various gaps in knowledge and methodological shortcomings. Further research is necessary to draw firmer conclusions about the influence of vitamin D intake on cancer. For example, Zheng *et al.* (59) suggest a framework for future vitamin D trials that could be helpful in obtaining more accurate results on the health benefits of vitamin D intake.

## **Conflicts of Interest**

MSF declares no conflicts of interest in relation to this study. TV The Saarland University, together with Prof. Vogt as one of several responsible group leaders, has received a research grant from the Jörg Wolff Foundation, Stuttgart, Germany. JR is member of the Arnold Rikli-Award Jury of the Jörg Wolff Foundation. The Saarland University, together with Prof. Reichrath as one of several responsible group leaders, has received a research grant from the Jörg Wolff Foundation, Stuttgart, Germany.

# **Authors' Contributions**

Matthias Schömann-Finck: Conceptualization, Investigation, Writing – original draft. Thomas Vogt: Supervision, Writing – review & editing. Jörg Reichrath: Conceptualization, Supervision, Investigation, Writing – review & editing.

#### References

- 1 Organisation for Economic Cooperation and Development (OECD): Health at a Glance 2024. State of Health in the EU Cycle. Paris, OECD Publishing, 2024.
- 2 Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, Alsharif U, Alvis-Guzman N, Amini E, Anderson BO, Aremu O, Artaman A, Asgedom SW, Assadi R, Atey TM, Avila-Burgos L, Awasthi A, Ba Saleem HO, Barac A, Bennett JR, Bensenor IM, Bhakta N, Brenner H, Cahuana-Hurtado L, Castañeda-Orjuela CA, Catalá-López F, Choi JJ, Christopher DJ, Chung SC, Curado MP, Dandona L, Dandona R, das Neves J, Dey S, Dharmaratne SD, Doku DT, Driscoll TR, Dubey M, Ebrahimi H, Edessa D, El-Khatib Z, Endries AY, Fischer F, Force LM, Foreman KJ, Gebrehiwot SW, Gopalani SV, Grosso G, Gupta R, Gyawali B, Hamadeh RR, Hamidi S, Harvey J, Hassen HY, Hay RJ, Hay SJ, Heibati B, Hiluf MK, Horita N, Hosgood HD, Ilesanmi OS, Innos K, Islami F, Jakovljevic MB, Johnson SC, Jonas JB, Kasaeian A, Kassa TD, Khader YS, Khan EA, Khan G, Khang YH, Khosravi MH, Khubchandani J, Kopec JA, Kumar GA, Kutz M, Lad DP, Lafranconi A, Lan Q, Legesse Y, Leigh J, Linn S, Lunevicius R, Majeed A, Malekzadeh R, Malta DC, Mantovani LG, McMahon BJ, Meier T, Melaku YA, Melku M, Memiah P, Mendoza W, Meretoja TJ, Mezgebe HB, Miller TR, Mohammed S, Mokdad AH, Moosazadeh M, Moraga P, Mousavi SM, Nangia V, Nguyen CT, Nong VM, Ogbo FA, Olagunju AT, Pa M, Park EK, Patel T, Pereira DM, Pishgar F, Postma MJ, Pourmalek F, Qorbani M,

- Rafay A, Rawaf S, Rawaf DL, Roshandel G, Safiri S, Salimzadeh H, Sanabria JR, Santric Milicevic MM, Sartorius B, Satpathy M, Sepanlou SG, Shackelford KA, Shaikh MA, Sharif-Alhoseini M, She J, Shin MJ, Shiue I, Shrime MG, Sinke AH, Sisay M, Sligar A, Sufiyan MB, Sykes BL, Tabarés-Seisdedos R, Tessema GA, Topor-Madry R, Tran TT, Tran BX, Ukwaja KN, Vlassov VV, Vollset SE, Weiderpass E, Williams HC, Yimer NB, Yonemoto N, Younis MZ, Murray CJL, Naghavi M: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the Global Burden of Disease study. JAMA Oncol 4(11): 1553-1568, 2018. DOI: 10.1001/jamaoncol.2018.2706
- 3 Sedrak MS, Cohen HJ: The aging-cancer cycle: mechanisms and opportunities for intervention. J Gerontol A Biol Sci Med Sci 78(7): 1234-1238, 2023. DOI: 10.1093/gerona/glac247
- 4 Cherniack EP, Levis S, Troen BR: Hypovitaminosis D: a widespread epidemic. Geriatrics 63(4): 24-30, 2008.
- 5 Garland CF, Garland FC: Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol 9(3): 227-231, 1980. DOI: 10.1093/ije/9.3.227
- 6 Bilani N, Elson L, Szuchan C, Elimimian E, Saleh M, Nahleh Z: Newly-identified pathways relating vitamin D to carcinogenesis: a review. In Vivo 35(3): 1345-1354, 2021. DOI: 10.21873/invivo.12387
- 7 Bandera Merchan B, Morcillo S, Martin-Nuñez G, Tinahones FJ, Macías-González M: The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol 167: 203-218, 2017. DOI: 10.1016/j.jsbmb.2016.11.020
- 8 Campbell MJ, Trump DL: Vitamin D receptor signaling and cancer. Endocrinol Metab Clin North Am 46(4): 1009-1038, 2017. DOI: 10.1016/j.ecl.2017.07.007
- 9 Carlberg C, Velleuer E: Vitamin D and the risk for cancer: A molecular analysis. Biochem Pharmacol 196: 114735, 2022. DOI: 10.1016/j.bcp.2021.114735
- 10 Davis-Yadley AH, Malafa MP: Vitamins in pancreatic cancer: a review of underlying mechanisms and future applications. Adv Nutr 6(6): 774-802, 2015. DOI: 10.3945/an.115.009456
- 11 Lips P, Bilezikian JP, Bouillon R: Vitamin D: Giveth to those who needeth. JBMR Plus 4(1): e10232, 2019. DOI: 10.1002/jbm4.10232
- 12 Scragg R, Sluyter JD: Is there proof of extraskeletal benefits from vitamin D supplementation from recent mega trials of vitamin D? JBMR Plus 5(1): e10459, 2021. DOI: 10.1002/jbm 4.10459
- 13 Fassio A, Rossini M, Gatti D: Vitamin D: no efficacy without deficiency. What's new? What's new? Reumatismo 71(2): 57-61, 2019. DOI: 10.4081/reumatismo.2019.1201
- 14 Webb AR, Kazantzidis A, Kift RC, Farrar MD, Wilkinson J, Rhodes LE: Colour counts: Sunlight and skin type as drivers of vitamin D deficiency at UK latitudes. Nutrients 10(4): 457, 2018. DOI: 10.3390/nu10040457

- 15 Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, Lips P, Munns CF, Lazaretti-Castro M, Giustina A, Bilezikian J: Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev 40(4): 1109-1151, 2019. DOI: 10.1210/er.2018-00126
- 16 Linseisen J, Bechthold A, Bischoff-Ferrari HA, Hintzpeter B, Leschik-Bonnet E, Reichrath J, Stehle P, Volkert D, Wolfram G, Zittermann A: Vitamin D und Prävention ausgewählter chronischer Krankheiten. Bonn, Deutsche Gesellschaft für Ernährung, 2011.
- 17 Maretzke F, Bechthold A, Egert S, Ernst JB, Melo van Lent D, Pilz S, Reichrath J, Stangl GI, Stehle P, Volkert D, Wagner M, Waizenegger J, Zittermann A, Linseisen J: Role of vitamin D in preventing and treating selected extraskeletal diseases-an umbrella review. Nutrients 12(4): 969, 2020. DOI: 10.3390/nu12040969
- 18 Rejnmark L, Bislev LS, Cashman KD, Eiríksdottir G, Gaksch M, Grübler M, Grimnes G, Gudnason V, Lips P, Pilz S, van Schoor NM, Kiely M, Jorde R: Non-skeletal health effects of vitamin D supplementation: A systematic review on findings from meta-analyses summarizing trial data. PLoS One 12(7): e0180512, 2017. DOI: 10.1371/journal.pone.0180512
- 19 Autier P, Mullie P, Macacu A, Dragomir M, Boniol M, Coppens K, Pizot C, Boniol M: Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol 5(12): 986-1004, 2017. DOI: 10.1016/S2213-8587(17)30357-1
- 20 Ross AC, Taylor CL, Yaktine AL, Del Valle HB, Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Food and Nutrition Board: Dietary reference intakes for calcium and vitamin D. Washington D.C., National Academies Press, 2011.
- 21 Holick MF: Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 19(2): 73-78, 2009. DOI: 10.1016/j.annepidem.2007.12.001
- 22 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3): 209-249, 2021. DOI: 10.3322/caac.21660
- 23 Zentrum für Krebsregisterdaten (ZfKD), Gesellschaft der Epidemiologischen Krebsregister in Deutschland (GEKID): Krebs in Deutschland für 2019/2020, 2023.
- 24 Schömann-Finck M, Reichrath J: Umbrella review on the relationship between vitamin D levels and cancer. Nutrients 16(16): 2720, 2024. DOI: 10.3390/nu16162720
- 25 Bonczar M, Ostrowski P, D'Antoni AV, Tubbs RS, Iwanaga J, Ghosh SK, Klejbor I, Kuniewicz M, Walocha J, Moryś J, Koziej M: How to write an umbrella review? A step-by-step tutorial with tips and tricks. Folia Morphol 82(1): 1-6, 2023. DOI: 10.5603/FM.a2022.0104
- 26 Ioannidis JP: Integration of evidence from multiple metaanalyses: a primer on umbrella reviews, treatment networks

- and multiple treatments meta-analyses. CMAJ 181(8): 488-493, 2009. DOI: 10.1503/cmaj.081086
- 27 Biondi-Zoccai G: Introduction. In: Umbrella reviews. Evidence synthesis with overviews of reviews and meta-epidemiologic studies. Biondi-Zoccai G. (ed.). Cham, Switzerland, Springer International Publishing, pp. 3-10, 2016.
- 28 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux P, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10): e1-e34, 2009. DOI: 10.1016/j.jclinepi.2009.06.006
- 29 Centre for Reviews and Dissemination (CRD): Systematic reviews. CRD's guidance for undertaking reviews in health care. York, Centre for Reviews and Dissemination, University of York, 2009.
- 30 Oxford Centre for Evidence-Based Medicine (OCEBM): Levels of Evidence (March 2009). Available at: https://www. cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centrefor-evidence-based-medicine-levels-of-evidence-march-2009 [Last accessed on February 29, 2024]
- 31 Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, Henry DA: AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358: j4008, 2017. DOI: 10.1136/bmj.j4008
- 32 Chen P, Hu P, Xie D, Qin Y, Wang F, Wang H: Meta-analysis of vitamin D, calcium and the prevention of breast cancer. Breast Cancer Res Treat 121(2): 469-477, 2010. DOI: 10.1007/s10549-009-0593-9
- 33 Estébanez N, Gómez-Acebo I, Palazuelos C, Llorca J, Dierssen-Sotos T: Vitamin D exposure and risk of breast cancer: a meta-analysis. Sci Rep 8(1): 9039, 2018. DOI: 10.1038/s4159 8-018-27297-1
- 34 Hossain S, Beydoun MA, Beydoun HA, Chen X, Zonderman AB, Wood RJ: Vitamin D and breast cancer: A systematic review and meta-analysis of observational studies. Clin Nutr ESPEN 30: 170-184, 2019. DOI: 10.1016/j.clnesp.2018.12.085
- 35 Kim Y, Je Y: Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: a meta-analysis. Br J Cancer 110(11): 2772-2784, 2014. DOI: 10.1038/bjc. 2014.175
- 36 Song D, Deng Y, Liu K, Zhou L, Li N, Zheng Y, Hao Q, Yang S, Wu Y, Zhai Z, Li H, Dai Z: Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: a dose-response meta-analysis of observational studies. Aging (Albany NY) 11(24): 12708-12732, 2019. DOI: 10.18632/aging.102597
- 37 Kanellopoulou A, Riza E, Samoli E, Benetou V: Dietary supplement use after cancer diagnosis in relation to total mortality, cancer mortality and recurrence: a systematic review and meta-analysis. Nutr Cancer 73(1): 16-30, 2021. DOI: 10.1080/01635581.2020.1734215

- 38 Buttigliero C, Monagheddu C, Petroni P, Saini A, Dogliotti L, Ciccone G, Berruti A: Prognostic role of vitamin d status and efficacy of vitamin D supplementation in cancer patients: a systematic review. Oncologist 16(9): 1215-1227, 2011. DOI: 10.1634/theoncologist.2011-0098
- 39 Shahvazi S, Soltani S, Ahmadi SM, de Souza RJ, Salehi-Abargouei A: The effect of vitamin D supplementation on prostate cancer: a systematic review and meta-analysis of clinical trials. Horm Metab Res 51(01): 11-21, 2019. DOI: 10.1055/a-0774-8809
- 40 Gilbert R, Martin RM, Beynon R, Harris R, Savovic J, Zuccolo L, Bekkering GE, Fraser WD, Sterne JAC, Metcalfe C: Associations of circulating and dietary vitamin D with prostate cancer risk: a systematic review and dose–response meta-analysis. Cancer Causes Control 22(3): 319-340, 2011. DOI: 10.1007/s10552-010-9706-3
- 41 Petrou S, Mamais I, Lavranos G, Tzanetakou IP, Chrysostomou S: Effect of vitamin D supplementation in prostate cancer: a systematic review of randomized control trials. Int J Vitam Nutr Res 88(1-2): 100-112, 2018. DOI: 10.1024/0300-9831/a000494
- 42 Attia S, Eickhoff J, Wilding G, McNeel D, Blank J, Ahuja H, Jumonville A, Eastman M, Shevrin D, Glode M, Alberti D, Staab MJ, Horvath D, Straus J, Marnocha R, Liu G: Randomized, double-blinded phase II evaluation of docetaxel with or without doxercalciferol in patients with metastatic, androgen-independent prostate cancer. Clin Cancer Res 14(8): 2437-2443, 2008. DOI: 10.1158/1078-0432.CCR-07-4274
- 43 Beer TM, Ryan CW, Venner PM, Petrylak DP, Chatta GS, Ruether JD, Redfern CH, Fehrenbacher L, Saleh MN, Waterhouse DM, Carducci MA, Vicario D, Dreicer R, Higano CS, Ahmann FR, Chi KN, Henner WD, Arroyo A, Clow FW, ASCENT Investigators: Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT investigators. J Clin Oncol 25(6): 669-674, 2007. DOI: 10.1200/ICO.2006.06.8197
- 44 Scher HI, Jia X, Chi K, de Wit R, Berry WR, Albers P, Henick B, Waterhouse D, Ruether DJ, Rosen PJ, Meluch AA, Nordquist LT, Venner PM, Heidenreich A, Chu L, Heller G: Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol *versus* docetaxel plus prednisone for patients with castrationresistant prostate cancer. J Clin Oncol 29(16): 2191-2198, 2011. DOI: 10.1200/JCO.2010.32.8815
- 45 Liu SL, Zhao YP, Dai MH, You L, Wen Z, Xu JW: Vitamin D status and the risk of pancreatic cancer: a meta-analysis. Chin Med J 126(17): 3356-3359, 2013. DOI: 10.3760/cma.j.issn.0366-6999.20122850
- 46 Liu Y, Wang X, Sun X, Lu S, Liu S: Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies. Medicine (Baltimore) 97(13): e0114, 2018. DOI: 10.1097/MD.000000000010114

- 47 Zhang X, Huang XZ, Chen WJ, Wu J, Chen Y, Wu CC, Wang ZN: Plasma 25-hydroxyvitamin D levels, vitamin D intake, and pancreatic cancer risk or mortality: a meta-analysis. Oncotarget 8(38): 64395-64406, 2017. DOI: 10.18632/oncotarget.18888
- 48 Heine-Bröring RC, Winkels RM, Renkema JM, Kragt L, van Orten-Luiten AC, Tigchelaar EF, Chan DS, Norat T, Kampman E: Dietary supplement use and colorectal cancer risk: a systematic review and meta-analyses of prospective cohort studies. Int J Cancer 136(10): 2388–2401, 2015. DOI: 10.1002/ijc.29277
- 49 Huang D, Lei S, Wu Y, Weng M, Zhou Y, Xu J, Xia D, Xu E, Lai M, Zhang H: Additively protective effects of vitamin D and calcium against colorectal adenoma incidence, malignant transformation and progression: A systematic review and meta-analysis. Clin Nutr 39(8): 2525-2538, 2020. DOI: 10.1016/j.clnu.2019.11.012
- 50 Liu Y, Yu Q, Zhu Z, Zhang J, Chen M, Tang P, Li K: Vitamin and multiple-vitamin supplement intake and incidence of colorectal cancer: a meta-analysis of cohort studies. Med Oncol 32(1): 434, 2015. DOI: 10.1007/s12032-014-0434-5
- 51 Ma Y, Zhang P, Wang F, Yang J, Liu Z, Qin H: Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J Clin Oncol 29(28): 3775-3782, 2011. DOI: 10.1200/JCO.2011.35.7566
- 52 Touvier M, Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, Riboli E, Hercberg S, Norat T: Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 20(5): 1003-1016, 2011. DOI: 10.1158/1055-9965.EPI-10-1141
- 53 Vaughan-Shaw PG, Buijs LF, Blackmur JP, Theodoratou E, Zgaga L, Din FVN, Farrington SM, Dunlop MG: The effect of vitamin D supplementation on survival in patients with colorectal cancer: systematic review and meta-analysis of randomised controlled trials. Br J Cancer 123(11): 1705-1712, 2020. DOI: 10.1038/s41416-020-01060-8
- 54 Wei H, Jing H, Wei Q, Wei G, Heng Z: Associations of the risk of lung cancer with serum 25-hydroxyvitamin D level and dietary vitamin D intake: A dose-response PRISMA meta-analysis. Medicine (Baltimore) 97(37): e12282, 2018. DOI: 10.1097/MD.000000000012282
- 55 Zhang L, Wang S, Che X, Li X: Vitamin D and lung cancer risk: a comprehensive review and meta-analysis. Cell Physiol Biochem 36(1): 299-305, 2015. DOI: 10.1159/000374072

- 56 Sluyter JD, Manson JE, Scragg R: Vitamin D and clinical cancer outcomes: a review of meta-analyses. JBMR Plus 5(1): e10420, 2020. DOI: 10.1002/jbm4.10420
- 57 Egger M, Schneider M, Davey Smith G: Spurious precision? Meta-analysis of observational studies. BMJ 316(7125): 140-144, 1998. DOI: 10.1136/bmj.316.7125.140
- 58 Shapiro S: Meta-analysis/Shmeta-analysis. Am J Epidemiol 140(9): 771-778, 1994. DOI: 10.1093/oxfordjournals.aje. a117324
- 59 Zheng S, Zhu Z, Ding C: How can we design a proper trial for vitamin D treatment of diseases? Facts and numbers. J Cachexia Sarcopenia Muscle 14(3): 1146-1149, 2023. DOI: 10.1002/jcsm.13200
- 60 Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM: Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96(7): 1911-1930, 2011. DOI: 10.1210/jc.2011-0385
- 61 Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA: The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1): 53-58, 2011. DOI: 10.1210/jc.2010-2704
- 62 Vieth R: Critique of public health guidance for vitamin D and sun exposure in the context of cancer and COVID-19. Anticancer Res 42(10): 5027-5034, 2022. DOI: 10.21873/anticanres.16011
- 63 Chlebowski RT, Johnson KC, Kooperberg C, Pettinger M, Wactawski-Wende J, Rohan T, Rossouw J, Lane D, O'Sullivan MJ, Yasmeen S, Hiatt RA, Shikany JM, Vitolins M, Khandekar J, Hubbell FA, Women's Health Initiative Investigators: Calcium plus vitamin D supplementation and the risk of breast cancer. J Natl Cancer Inst 100(22): 1581-1591, 2008. DOI: 10.1093/jnci/djn360
- 64 Kralova M, Jirasko M, Dedeckova E, Hatakova H, Broz P, Simanek V, Slouka D, Pecen L, Kucera R: Comparison of vitamin D3 supplementation doses of 1,000, 2,000, 4,000 and 8,000 IU in young healthy individuals. In Vivo 39(1): 452-458, 2025. DOI: 10.21873/invivo.13848
- 65 Ernster VL: Nested case-control studies. Prev Med 23(5): 587-590, 1994. DOI: 10.1006/pmed.1994.1093