¥

D
¥

Tl ]
g nutrients

Systematic Review

Vitamin D’s Impact on Cancer Incidence and Mortality: A
Systematic Review

Sunil J. Wimalawansa

check for
updates

Academic Editor: Caroline S. Stokes

Received: 10 April 2025
Revised: 24 June 2025

Accepted: 25 June 2025
Published: 16 July 2025

Citation: Wimalawansa, S.J. Vitamin
D’s Impact on Cancer Incidence and
Mortality: A Systematic Review.
Nutrients 2025,17,2333. https://
doi.org/10.3390/nu17142333

Copyright: © 2025 by the author.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

CardioMetabolic & Endocrine Institute, North Brunswick, NJ, USA; suniljw@hotmail.com

Abstract

Background/Objectives: Adequate vitamin D levels are essential for various physiological
functions, including cell growth, immune modulation, metabolic regulation, DNA repair,
and overall health span. Despite its proven cost-effectiveness, widespread deficiency per-
sists due to inadequate supplementation and limited sunlight exposure. Methods: This
systematic review (SR) examines the relationship between vitamin D and the reduction of
cancer risk and mortality, and the mechanisms involved in cancer prevention. This SR fol-
lowed the PRISMA and PICOS guidelines and synthesized evidence from relevant studies.
Results: Beyond genomic actions via calcitriol [1,25(OH);D]-receptor interactions, vitamin
D exerts cancer-protective effects through mitigating inflammation, autocrine, paracrine,
and membrane signaling. The findings reveal a strong inverse relationship between serum
25(OH)D levels and the incidence, metastasis, and mortality of several cancer types, includ-
ing colon, gastric, rectal, breast, endometrial, bladder, esophageal, gallbladder, ovarian,
pancreatic, renal, vulvar cancers, and both Hodgkin’s and non-Hodgkin’s lymphomas.
While 25(OH)D levels of around 20 ng/mL suffice for musculoskeletal health, maintaining
levels above 40 ng/mL (100 nmol/L: range, 40-80 ng/mL) significantly lowers cancer
risks and mortality. Conclusions: While many observational studies support vitamin D’s
protective role in incidents and deaths from cancer, some recent mega-RCTs have failed to
demonstrate this. The latter is primarily due to critical study design flaws, like recruiting
vitamin D sufficient subjects, inadequate dosing, short durations, and biased designs in
nutrient supplementation studies. Consequently, conclusions from these cannot be relied
upon. Well-designed, adequately powered clinical trials using appropriate methodologies,
sufficient vitamin D3 doses, and extended durations consistently demonstrate that proper
supplementation significantly reduces cancer risk and markedly lowers cancer mortality.

Keywords: 25(OH)D; 1,25(0OH),D; epidemiology; malignancy; metastasis; micronutrients;
prevention; public health; health risks; susceptibility

1. Introduction

In most humans, vitamin D is typically synthesized through skin exposure to sunlight
via ultraviolet B rays (UVB), particularly during summer-like conditions [1]. It is metabo-
lized primarily in the liver and peripheral target cells to form 25(OH)D (calcifediol) [2,3].
Part of the calcifediol produced in the liver gets converted to the active form, 1,25(0OH),D
(calcitriol), in the renal tubules. At the same time, another portion, along with Dj, is stored
in muscle and fat cells via an active mechanism [4,5]. The remainder of D3 and 25(OH)D in
the circulation diffuse (and endocytosed) into peripheral target cells, including immune
cells [6], enabling local synthesis of calcitriol [3,7]. This locally synthesized calcitriol from
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both D3 and calcifediol is crucial for their autocrine, paracrine signaling, and genomic
functions [8-10]. Additionally, vitamin D also has non-genomic functions [11-13], such as
membrane stabilization [12,14,15] in epithelial and immune cells [16,17].

Over half of the global population experiences vitamin D deficiency at some point
during the year, surpassing iron deficiency [18-21]. This is prevalent across various regions,
regardless of geographic location, due to multiple factors. Limited winter sunlight, sun
avoidance (use of umbrellas, sunscreen, and clothing), high melanin content or scarring in
the skin, and aging significantly reduce cutaneous vitamin D synthesis [22-24]. S-avoiding
behavior is prevalent in tropical regions that limit vitamin D production [25]. Vitamin D
synthesis drops to negligible levels during winter, early mornings, and late afternoons, also
when individuals wear excessive clothing or apply heavy sunscreen [26-29].

Ironically, regions that have increasingly adopted sun-avoidant behaviors, such as
Middle Eastern countries (to avoid harsh climatic conditions) and India (particularly
among women due to concerns about skin darkening) over the past four decades, have
reported increased prevalence of hypovitaminosis D [30]. Overall, lower serum 25(OH)D
levels are associated with increased incidences of cancer [31,32], infections, autoimmune
diseases [33], and chronic conditions [20,34,35]. Most epidemiological and observational
studies emphasize the role of adequate vitamin D in reducing cancer mortality rather
than incidence [28], with benefits largely attributed to solar UVB exposure [36]. Mortality
is a more distinctly defined endpoint than symptoms, which provide more substantial
beneficial results. However, cancer outcomes vary significantly depending on the timing of
diagnosis, screening, and the interventions used. The variability observed across studies is
largely attributable to differences in study populations and the stage of cancer at the time
of recruitment.

1.1. Systemic Challenges and Clinical Trial Designs Using Vitamin D

While case-control, prospective, and cohort studies support a stronger association
between hypovitaminosis and cancer [6,37], recent randomized controlled trials (RCTs)
assessing vitamin D supplementation and cancer incidence have reported less convincing
evidence [38—42]. Observational studies are also susceptible to confounding bias, but are
minimized with fewer manipulations (straightforward study designs without introducing
biases) and have a larger sample size and longer study duration. RCT study designs are
complex and inherently unsuitable for testing micronutrients [43,44].

Notably, recent large RCTs, such as the VITAL study [45,46] and others, have been
criticized for significant design flaws [25,45,47], which has led to the conclusion that there
are non-significant effects of vitamin D on primary outcomes, including the prevention and
mortality of cancer and cardiovascular events [48,49]. Nevertheless, reductions in acute
respiratory infections and cancer mortality have been reported [47]. Negative findings in
these trials stem from the enrollment of participants without baseline deficiency, design
bias, inadequate doses, short durations, and infrequent administration, often less than once
a month [43,45,46,50].

Improvements in disease outcomes, such as in cancer, are unlikely without properly
addressing study design failures. Despite this, due to a lack of understanding of the
fundamental biological differences between pharmaceuticals and micronutrients, some
research groups continue to use RCTs [45,51,52] and the Mendelian randomization process
for vitamin D (and other micronutrient) clinical studies. For micronutrients, these two
methods are inferior to ecological clinical studies for evaluating nutrients and, therefore,
are not the proper methods for testing and evaluating the efficacy of micronutrients, such
as vitamin D [42,43,47,53].
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1.2. The Importance of Adjusting for Confounders in Clinical Research

To draw valid conclusions, it is essential to attend to all correctable confounders in
clinical trials. In this regard, properly designed RCTs could minimize confounding effects,
such as subject variability, through randomization (using other mechanisms like stratified
randomization), which distributes potential confounders evenly across treatment groups.
While a proper randomization process can significantly reduce study confounders for
pharmaceuticals, it does not apply to micronutrients. Faulty study designs can overwhelm
the validity of data and conclusions by amplifying confounders.

Minimizing confounders in observational studies can be achieved by increasing the
sample size and the duration of the clinical study [43]. In contrast, the varied circulating
25(OH)D concentrations observed in both RCTs and observational/ecological studies may
also reflect behavioral factors (e.g., taking supplements or consuming other medications)
or non-vitamin D-related mechanisms, such as variable solar UVB exposure and ambient
UVB dosage, as reported in cardiovascular diseases (CVDs) [42,48,50].

In addition to the above, some confounding factors could modify the relationship
between vitamin D and cancer prevention and mortality [43]. For instance, individuals with
lower vitamin D status may exhibit generally unhealthy (or risky) behavior, sedentarism,
and sub-optimal nutrition, such as reduced physical activity and obesity, which could
independently influence cancer risk. Limited outdoor activity and lower sun exposure
reduce vitamin D synthesis [47]. These interrelated factors complicate the attribution of
cancer prevention effects to micronutrients, specifically vitamin D [43].

Correlating micronutrients like vitamin D with multiple clinical benefits beyond
diseases such as rickets and osteomalacia is challenging but feasible. Such difficulties are
partly due to technical and methodological issues [54]. For vitamin D, it is impossible to
have a true placebo group in RCTs due to the widespread consumption of over-the-counter
supplements and variable exposure to ambient UVB rays [43,53]. Unlike pharmaceutical
agents, vitamin D has a threshold beyond which a demonstrable beneficial effect is not
observed [55,56], except in cases of vitamin D-resistant syndromes [49].

1.3. Vitamin D—Cancer Risk Reduction vs. Mortality

When designing clinical trials related to micronutrients, several factors must be consid-
ered to minimize confounders, thereby allowing for improved clinical data interpretation,
as recently emphasized in Nutrient Reviews [43]. The most robust associations between
vitamin D and cancer outcomes pertain to mortality rather than incidence [57-60]. This dis-
tinction arises partly because, unlike symptoms (e.g., morbidities), mortality is a definitive
(accurate) and consistently measurable endpoint.

In contrast, cancer incidence can be influenced by various controllable and indepen-
dent factors, including screening practices, sensitivity of the methods used, diagnostic
criteria, reporting standards, healthcare access, and social determinants, which lead to
variability in detection timelines [50,53]. Consequently, it is unsurprising that the mortality
data provides a more reliable basis for assessing the potential benefits of vitamin D supple-
mentation in cancer-related outcomes, as well as in other conditions like cardiovascular
and pulmonary disorders. However, that does not exclude the beneficial effects of vitamin
D in disease prevention.

Additionally, studying the role of vitamin D in cancer prevention and/or mortality is
even more challenging, given the need to select appropriate subjects and conduct multi-year
follow-ups with proper vitamin D supplementation. However, such studies suffer from
poor compliance and a high incidence of loss to follow-up. These factors significantly affect
data collection, interpretation, and clinical outcomes, thereby impacting the validity and
generalizability of the findings to other populations.
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Mendelian analyses: While valuable in specific contexts, Mendelian randomization
studies and analyses often fall short of establishing causation and hold limited signifi-
cance for nutrients like vitamin D [61]. Such analyses consequently fail to provide help-
ful information about vitamin D and are therefore not recommended, as they are too
far from the incident [50]. Thus, they infrequently provide conclusive evidence of a
causal relationship between circulating 25(OH)D concentrations and cancer-related health
risks [53,62]. Moreover, it is important to note that meta-analyses—often susceptible to
selection bias—have also produced negative or inconsistent results, particularly when they
include flawed RCTs, thereby affecting the validity of their conclusions [63].

1.4. Systematic Review Process

This systematic review (SR) was conducted following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines over a defined period [64-66]
and the Participants, Intervention, Comparison, Outcome (PICOS) framework (Table 1) [67].
The author followed guidance from the Equator Network (www.equator-network.org/,
accessed on 15 November 2024) and the PRISMA statement, as well as the PRISMA-P
checklist [61,64,68], to assess the quality of the literature [67]. PRISMA Checklist [66] is
provided in Supplementary Materials.

Table 1. PICOS elements and study design philosophies.

PICOS Criteria Conditions

1 Participants Adults aged 18 to 80; de novo or diagnosis of a cancer

. Vitamin D, calcium and vitamin D, calcifediol, solar UVB exposure,
2 Intervention )

Omega-3 fatty acids
Retrospective, case report, observational, epidemiological,
3 Comparison/control community-based/ecological, and randomized control studies, and
longer-term follow-up studies related to cancer
Morbidity, complications, and death; all-cause mortality.
4 Outcome elements Relationship of serum 25(OH)D to the incidences and changes in
cancer prevalence
Randomized controlled clinical trials, non-randomized controlled clinical

5 Study design philosophies trials, non-randomized non-controlled trials, and prospective and

observational studies related to cancer are included.

1.4.1. Literature Search

Researchers (SJW and HB) systematically searched PubMed, Medline, EMBASE, and
the Cochrane Central Register of Controlled Trials for original and review articles on
vitamin D status in the general population, including broader aspects. The search, using
terms such as “vitamin D,” cholecalciferol, 25(OH)D, and 25-hydroxycholecalciferol, in
conjunction with cancer risks and mortality, resulted in 3995 peer-reviewed publications
related to vitamin D and cancer or malignancy.

1.4.2. Rationale for the Study

Although the effects of vitamin D on skeletal tissues are well established, its biological
functions in non-skeletal tissues are less understood. Over the past two decades, thousands
of studies conducted in extra-skeletal systems have reported mostly positive but some
reported non-conclusive effects of vitamin D. Despite these, vitamin D has overwhelmingly
significant biological and physiological effects on extra-skeletal tissues. For example, re-
lated to cancer, calcitriol plays a crucial role in regulating cell proliferation, differentiation,
and apoptosis, as well as controlling the release of cytokines, growth factors, hormones, and
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cellular signaling [69-72]. These effects are vital for cancer prevention, metastatic progres-
sion, and death. As a result, vitamin D is considered an essential factor in regulating cell
growth and differentiation, thus suppressing the risks and development and progression
of cancer.

However, the precise mechanism by which calcitriol exerts its physiological effects
on extra-skeletal tissues could be deeper than we currently understand. Numerous recent
studies have examined the relationship between vitamin D and cancer, mostly on mortality.
This SR focuses on assessing the effectiveness of vitamin D in cancer prevention [73] and
its role in reducing the spread and mortality.

1.4.3. Objective of the Study

The current understanding of vitamin D biology and physiology is primarily based
on retrospective analyses, case reports, and epidemiological studies [27,74,75]. Although
numerous studies have explored the relationship between vitamin D and cancer, only
a few RCTs have focused on cancer prevention [76], including the effects of ultraviolet
B (UVB) rays [77]. However, most of them have used insufficient doses to raise serum
25(OH)D to therapeutic levels of above 40 ng/mL Despite the lack of complete consensus,
most evidence supports the paradigm that adequate vitamin D reduces the risk of certain
cancers (the biology of each cancer can be different) and mitigates their severity and
metastasis [78-81].

Most studies support maintaining serum 25(OH)D levels higher than 40 ng/mL to
achieve vitamin D’s metabolic benefits, including reduced cancer risk [40,41,82] and mor-
tality [83,84]. Even greater protection is reported at levels above 50 ng/mL [41]. However,
some recent RCTs, especially those that relied on serum 25(OH)D levels less than 30 ng/mL,
have yielded inconclusive or conflicting results [42,45,46,85,86]. In addition, such reports
are primarily due to poor study designs, including the inclusion of non-deficient partici-
pants, failure to measure baseline levels, and failure to achieve the predefined therapeutic
25(OH)D levels after supplementation [42,85,86].

Future clinical research should prioritize well-designed ecological studies. If RCTs are
to be used, they must be unbiased, adequately powered, and based on rigorous, appropriate
study designs [3], focusing on physiological mechanisms to clarify how vitamin D reduces
cancer risks and mortality [70,87-94]. In this SR, key data from relevant scientific publi-
cations on vitamin D and cancer were collected, synthesized, analyzed, and interpreted.
The primary aim was to evaluate how vitamin D influences cell growth in reducing cancer
incidence, severity, metastasis, and mortality, and to determine whether it lowers overall
cancer risk and death rates.

1.4.4. Search Strategy

PubMed, Medline, EMBASE, and the Cochrane Central Register of Controlled Trials
were searched systematically for prospective original studies, epidemiological data, and
reviews for this systematic review. Included articles focused on vitamin D as the primary
supplement, its mechanisms of action on cancer, and related clinical outcomes. Controlled
search terms included “vitamin D,” cholecalciferol, 25(OH)D, 25-hydroxycholecalciferol,
calcifediol, calcitriol, cancer risks/incidence, cancer mortality, and malignancy. Additional
terms, such as 25-hydroxyvitamin D (25(OH)D), calcifediol, and calcitriol, were selected
from Medical Subject Headings (MeSH) and the EMTREE thesaurus [8], combined with
“cancer” and ‘malignancy” to refine and manage search volume.

1.4.5. Protocol and Manuscript Selection

A protocol was developed to streamline and track relevant publications. The SR
includes observational studies, epidemiological investigations, randomized trials, and
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mechanistic or hypothesis-generating studies [65], all of which are relevant to the topic.
The literature search involved regular original papers, updates, and full-text reviews [64],
with article selection based on predefined criteria for cancer and vitamin D.

This review rigorously evaluated selected studies using conceptual frameworks
aligned with their objectives. It considers peer-reviewed, English-language articles pub-
lished between January 1991 and March 2025. The initial database screening identified
480 articles after removing duplicates and irrelevant entries. Secondary and tertiary further
EndNote searches (version 21.4, Thomson Reuters)retrieved 87 additional full-text articles.
This SR included 416 articles. Figure 1 outlines the PRISMA review process [66].

Number of publications

initially identified in \ Reduction of numbers
databases; n = 3995 using multiple keywords

strategy; n = 3267

|dentification

Reduction of numbers

CE” using clusters of key _
S| word /strategy; n = 728 Rema?wvdalir?;lgegu?ate
o
3] publications; n = 248
@ | Publications remaining
= n =430 ” N
= Additional texts identified
(=)} through other sources
i Full text accessed and Added: n = 58
- screened, assessing for
=} eligibility; n= 538
2 Publications
° o . excluded for other
= Publications included reasons; n = 151
IS in the final qualitative
© SR-synthesis; n = 387
ig ‘ Supporting references;
c added; n =29
=

Total publications included
inthe SR; n=416

SR = Systematic Review PRISMA flow diagram

Figure 1. PRISMA flow chart—Flow chart of the assessment of research papers and advances in the
knowledge of vitamin D [levels of 25(OH)D] in, modifying cancer risks, metastasis, and death rates
(SR = systematic review).

1.4.6. Data Abstraction and Synthesis

Assessments considered each study’s rationale, objectives, design, potential biases,
and eligibility criteria. Data collection, analysis, and synthesis followed the evidence-based
PICOS framework (Table 1) [67] and included meta-analytical approaches, as undertaken
previously when applicable [66]. Irrelevant and duplicate articles were excluded. Re-
searchers critically appraised the strength of evidence on vitamin D’s role in cell prolifera-
tion, cancer development, and metastasis.

Furthermore, data were reviewed and independently evaluated according to assigned
tasks by two investigators. Reviewers performed specific analyses and resolved disagree-
ments through discussion. Integrated data were presented as narrative conclusions [64]
that integrate evaluations from observational and ecological studies, as well as RCTs, and
apply the National Heart, Lung, and Blood Institute quality assessment tool.



Nutrients 2025, 17, 2333

7 of 43

1.4.7. Literature Search and Analytical Outcomes

This SR assessed and highlighted the global prevalence of vitamin D deficiency, par-
ticularly among individuals with chronic illnesses [34], including cancer [95-97], and in
children [98], in alignment with its theme. Cancer incidence continues to rise, particularly
in regions with limited sunlight [31,98,99] and in areas characterized by sun-avoidant
behaviors [31,95]. Approximately one-third of the publications reported inconsistent or no
significant effects of vitamin D supplementation on cancer, often due to inadequate dosing
or short intervention periods [42,45,46,85,86]. Only one-third of the remaining studies
focused on the role of vitamin D in cancer prevention.

Furthermore, this SR emphasizes the urgent need for higher-quality, well-designed,
longer-term prospective and ecological clinical studies, as well as RCTs (although less
suitable to test efficiencies of micronutrients like vitamin D) that are adequate and sta-
tistically powered and which are provided with sufficient vitamin D (i.e., a minimum of
5000 ID/day, preferably following a loading dose of about 200,000 IU stat dose) and dura-
tion to test hypotheses regarding the effects of vitamin D on cancer. Such studies are very
few, and thus, more are needed. Many recent large-scale sponsored RCTs have been flawed
by preventable design errors [42,45,46,85,86].

Mentioned design errors include enrolling participants with adequate baseline vitamin
D levels, failing to assess dose-response relationships or account for daily sunlight expo-
sure, not measuring baseline 25(OH)D concentrations, and failing to assess the baseline
serum 25(OH)D levels and correlate the achieved serum 25(OH)D levels (instead of doses
administered) with clinical outcomes [43,53] [48]. Additional issues, such as permitting
participants to use over-the-counter micronutrients (including vitamin D), not defining
target serum 25(OH)D levels, and omitting hard clinical endpoints, misperceive results and
conclusions [1].

Studies that have reported negative or inconclusive outcomes commonly exhibited
one or more of these fundamental methodological shortcomings. In contrast, nearly all
well-designed, adequately controlled, and statistically powered RCTs have consistently
demonstrated that adequate vitamin D supplementation significantly reduces cancer risk
and mortality [96,97,100,101].

1.4.8. Scope of This Review and Outcomes

In addition to the global rise in vitamin D deficiency and the cancer incidence dis-
cussed in Section 1, in many countries, there is a lack of awareness and implementa-
tion of practical cancer prevention guidelines [27,102]. Furthermore, recommendations
from scientific societies are often contradictory, and guidance on sun exposure remains
inconsistent [103,104]. It is crucial to ensure the long-term maintenance of serum 25(OH)D
concentrations above 40 ng/mL [49]—the minimum effective level—with consideration for
age, body weight, or for BMI-tailored optimal vitamin D doses [40,49,55,56,105].

The reported large effect sizes in clinical studies that have used vitamin D in cancer
suggest hypovitaminosis as an essential factor contributing to vulnerability, particularly in
cancers like breast and colon [106-111]. Given these considerations, along with the high
cost of care, morbidity, and mortality, as well as ethnic differences in cancer incidence
and outcomes, individual countries or regions (e.g., Africa, the Gulf, North America, and
Southeast Asia) must develop targeted guidelines for their respective populations. When
properly applied, these guidelines could significantly reduce the risks of cancer, chronic
diseases, cardiovascular disorders, viral infections, autoimmune conditions, and other
health issues.

The above considerations should include the costs and benefits of raising aware-
ness across populations to ensure the use of recommended dietary allowances (RDAs)
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for micronutrients, including vitamin D. Establishing safe and effective serum 25(OH)D
ranges (minimum and upper safety limits), safe sun exposure guidelines and direc-
tives for targeted food fortification programs are cost-effective and particularly valuable
for vulnerable populations. A proactive approach to maintaining long-term vitamin D
sufficiency—maintaining serum 25(OH)D concentrations above 40 ng/mL—will reduce
the burden of chronic diseases, including cardiovascular, metabolic diseases, and cancer
risks [95-97]. While this SR focused on vitamin D’s role in cancer prevention, the same
procedure and principles apply to other chronic diseases [34] and help mitigate viral
respiratory epidemics and pandemics [112,113].

2. Vitamin D Requirements—Sun Exposure, Biological Functions,
and Cancer

A recent narrative review found that solar radiation reduced the risks and mortality of
23 types of cancer and showed stronger inverse correlations between serum 25(OH)D levels
and 12 cancer types. These findings were based on observational studies, meta-analyses,
and case-control studies. Unlike Mendelian randomization studies, serum 25(OH)D con-
centrations were measured in these studies, closer to the time of cancer diagnosis [87].
Clinical studies have also found that daily or weekly vitamin D intake has a greater effect
on reducing cancer risk than less frequent dosing, such as monthly [49,114,115]. Despite
extensive data, there is no consensus on optimal serum 25(OH)D levels for reducing cancer
risks. A detailed formula and tables for calculating daily vitamin D intake based on body
weight or BMI for individuals have been published [82]; a simplified version is provided
below [33].

I.  Not obese (average wt.: BMI, <29): 70-90 IU/kg BW
II.  Moderately obese (BMI, 30-39): 100-130 IU/kg BW
III.  Morbid obesity (BMI, over 40): 140-180 IU/kg BW

Current vitamin D standards and government guidelines are primarily based on
outdated RCTs and focus solely on the minimum requirement for skeletal health—namely,
prevention of rickets. They have mistakenly ignored the need for all other body systems,
and focus solely on the minimum requirement for skeletal health [116]—namely, prevention
of rickets [27,74,75], a limitation that has been noted by others [117,118]. In contrast, over
the past fifteen years, robust evidence has emerged supporting the benefits of vitamin
D outside the skeleton, including its role in cancer prevention [81,119-122]. Additional
studies have shown the role of vitamin D in regulating cell growth and differentiation [123],
inhibiting cancer progression, and reducing mortality [83,84].

In the absence of adequate sunlight exposure, maintaining a blood level of 25(OH)D
that is above 40 ng/mL (75 nmol/L) in “non-obese” individuals will typically re-
quire a daily oral intake of at least 5000 IU (125 pg) of vitamin Dj3. For these indi-
viduals, the safe upper limit for long-term vitamin D use is recognized as 10,000 IU
per day [124-128]. Meanwhile, the recommended minimum serum 25(OH)D concentrations
ranged from 30 to 60 ng/mL [41], while higher levels are more effective. For example, evi-
dence strongly suggests that levels above 50 ng/mL are necessary and better to effectively
combat cancer, infections, heart disease, and autoimmunity, and to support robust immune
functions [55,56,129-131]. The overall research data from positive trials suggest that the min-
imum level necessary for cancer risk reduction and reduced mortality is 40 ng/mL [40,105].

2.1. Sun Exposure and Generation of Vitamin D

Despite the health benefits of safe sun exposure, generating sufficient vitamin
D3 among populations has limitations. Sun avoidance can markedly reduce the der-
mal production of vitamin D. The earth’s atmosphere absorbs (and reflects) UVB ra-



Nutrients 2025, 17, 2333

9 of 43

diation, leading to a lesser amount reaching the surface [132]. Factors include sun
avoidance behavior, darker skin pigmentation, time of day, and duration of sunlight
exposure [133,134]. When evaluating sun exposure, the month and season are important.
The solar zenith angle—the angle between the sun and the vertical axis—particularly
during early mornings, evenings, and winter, results in less UVB penetrating the skin [77].

Ecological studies have demonstrated a significant inverse correlation between solar
UVB exposure and the incidence of certain cancers and cancer-related mortality [70,87-90].
One population-based study suggested that achieving a serum 25(OH)D concentration
sufficient to reduce cancer risks through casual sun exposure would require an oral intake
of approximately 2800 IU of vitamin D per day [135], perhaps an underestimation. This
highlights the pressing need for public health strategies that prioritize vitamin D sufficiency.
By addressing the challenges posed by sun exposure limitations and evolving dietary
guidelines, healthcare systems can mitigate the prevalence of hypovitaminosis D cost-
effectively. Simultaneously, research into optimal supplementation protocols and their
integration into preventive healthcare practices will serve as a crucial step toward reducing
the global burden of chronic diseases and cancer [136,137].

2.2. Causal Role of Vitamin D Deficiency in the Development of Select Cancers

Studies applying Bradford Hill’s criteria for causality have confirmed that hypovi-
taminosis D significantly increases vulnerability to various diseases [49,53,109,119,138].
Several other studies have provided compelling evidence that hypovitaminosis D is
a major factor contributing to developing complications and increased mortality from
COVID-19 [55,56,138,139], as well as increasing the risk of other diseases such as mul-
tiple sclerosis and periodontal disease [55,56,138,139], including cancers [87]. However,
in certain areas, evidence from RCTs remains weak or inconclusive, with a few studies
reporting negative outcomes [75,140,141]. Poor clinical study designs limited the proper
interpretation and value of these studies [51,52].

Findings from the current study should be used to expand knowledge among health-
care workers and scientists, aiding in the distribution of essential information regarding
the relationship between serum 25(OH)D concentrations and cancer risks. The data sup-
port that hypovitaminosis D significantly increases the vulnerability to cancer [49,142].
Conversely, maintaining serum 25(OH)D concentrations above 40 ng/mL [27,102] ap-
pears promising in controlling cancer growth and metastasis, as well as reducing motil-
ity [40,41,143]. Studies in Western Europe have shown that population-based vitamin D
supplementation strategies may reduce the economic burden by decreasing the prevalence
of cancer and other chronic diseases [20,34,35,144].

2.3. Vitamin D Plus Calcium—Effect on Cancer

While two RCTs have reported that vitamin D plus calcium supplementation had
no benefit in reducing cancer risk [89], reanalysis of data from cohorts such as the Grass-
rootsHealth volunteer group—based on achieved serum 25(OH)D concentrations rather
than administered dose—demonstrated a significant reduction in breast cancer risk [41].
Women with 25(OH)D concentrations >60 ng/mL had a substantially lower risk compared
with those with levels <20 ng/mL (95% CI, 0.04-0.62; p = 0.006) [41]. More information is
provided in a Q&A [102,145].

A similar inverse association with breast cancer incidence has been observed across
three independent cohorts, indicating that higher serum 25(OH)D concentrations are linked
to a lower risk of breast cancer. [146]. However, other studies have reported inconsistent
findings [114]. Moreover, the data indicate that, while vitamin D alone may benefit, adding
calcium provides limited advantages and may even lead to adverse effects.
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The seven-year Women’s Health Initiative (WHI) trial found that daily supplemen-
tation with 1000 mg of calcium and 400 IU of vitamin D3 did not significantly reduce
the overall incidence of invasive cancers in postmenopausal women [147,148]. However,
despite the low dose and the permitting of participants to take additional over-the-counter
supplements, a post-hoc analysis revealed a significant reduction in breast and colorectal
cancer incidence among women who were using vitamin D and calcium supplements at
the time of recruitment [149,150].

In the WHI study, women who received calcium and vitamin D supplementation,
particularly those who were vitamin D deficient before the trial, experienced a significantly
lower incidence of breast cancers (a 14% to 20% risk reduction) and a nonsignificant 17%
reduction in colorectal cancers [109,151]. Cancer risk reductions were seen mainly in post-
menopausal women who had low vitamin D levels at the start. Other studies have reported
no significant risk reduction for all cancer types with combined calcium and vitamin D
supplementation [93,152].

However, reported findings related to vitamin D, calcium supplementation, or their
combination, and the dose-response relationships with health outcomes were inconsis-
tent [153]. In many of these RCTs and reviews, vitamin D alone showed protective effects
against cancer, but these benefits diminished or disappeared when combined with cal-
cium [154]. Poorly designed studies—such as several large cancer trials using vitamin D,
including the VITAL [155] and D2d studies—unsurprisingly reported negative outcomes,
as discussed in Section 4.1.

An exception is dietary sources like milk products, particularly cheese [156], which
contain both vitamin D and calcium and are associated with a reduced risk of colorectal
cancer [157,158]. In contrast, well-designed clinical studies that supplemented subjects
with adequate doses of vitamin D to influence endpoints consistently reported significant
benefits, including reductions in cancer risk and mortality.

2.4. Vitamin D 1,25(OH),D Interactions and Cell Proliferation

Interactions between 1,25(0OH);D] and vitamin D receptor (VDR) occur in virtually
every cell in the body [27,102], including cancer cells. Vitamin D influences the transcription
of cell cycle proteins, resulting in a reduced rate of cell proliferation [159-161]. Moreover,
an elevated vitamin D status enhances cell differentiation in various cell types, includ-
ing osteoclast precursors, enterocytes, keratinocytes, gastrointestinal epithelial cells, and
precancerous and cancer cells [160,162].

Evidence from RCTs and ecological studies suggests that maintaining serum 25(OH)D
concentrations above 30 ng/mL (but significantly improved outcomes when serum
25(OH)D levels are maintained higher than 40 ng/mL) is associated with a reduced
risk of some cancers. However, this may not impact cancer severity, spread, or mor-
tality [89,144,163], perhaps because serum 25(OH)D concentrations are below the threshold
needed. Another study reported a significant decrease in cancer incidence when the mean
serum 25(OH)D concentration increased from 33 ng/mL to over 45 ng/mL [39]. Most
studies have demonstrated an inverse correlation between serum 25(OH)D concentrations
and cancer risk [87,164-166]. However, it remains uncertain whether normalizing vitamin
D status can reduce the risk of progression or dissemination of existing cancers or whether
this applies to all cancer types [39,167,168].

Meanwhile, clinical studies on colorectal cancer have confirmed a strong inverse
correlation between dietary vitamin D and calcium intake and cancer risk [150,169,170].
However, other studies have reported conflicting findings [147], primarily due to method-
ological differences. Unsurprisingly, a meta-analysis of RCTs has indicated that vitamin
D supplementation at doses between 400 and 1100 IU/day, even when administered
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for up to seven years, had a minimal impact on cancer incidence but was associated
with a reduction in total cancer mortality [171]. This further underscores the importance
of using higher doses and maintaining elevated serum 25(OH)D concentrations than
currently recommended.

2.5. Effects of Vitamin D on Cell Proliferation and Metastasis

Vitamin D lowers cancer risks, among others, by inhibiting cell proliferation, pro-
moting differentiation and apoptosis, and suppressing angiogenesis [106]. Vitamin D sup-
presses angiogenesis by downregulating pro-angiogenic factors, such as hypoxia-inducible
factor-1 [172,173] and vascular endothelial growth factor (VEGF) [174,175]. Vitamin D
also regulates angiogenesis through NF-«B signaling, which induces angiogenic factors,
such as IL-8 and VEGF [175], as reported in prostate cancer cells [176] and suppression
of prostaglandin pathways [177]. Additionally, in melanoma cell lines, vitamin D3 medi-
ates an anti-proliferative effect and modulates the expression of key cell cycle regulatory
molecules, such as p21, p27, cyclin D1, and cyclin A1 [178].

Inhibiting metastasis involves reducing proteases, such as matrix metalloproteinase 9
(MMP9), matrix metalloproteinase 13 (MMP13), and cathepsin, that degrade the extracel-
lular matrix. Vitamin D also upregulates protease inhibitors, such as tissue inhibitors of
metalloproteinase 1 (TIMP-1) and cathepsin inhibitors, which prevent the degradation
of the extracellular matrix [179,180]. In addition, suppressing angiogenesis, CDK2, and
stimulating p21 reduces the metastasis of cancer cells [181].

The mechanisms by which vitamin D reduces cancer incidence include its regulatory
effects on cellular differentiation, proliferation, and apoptosis (programmed cell death). Ad-
ditionally, the observed reductions in cancer metastasis and mortality are linked to vitamin
D’s ability to inhibit angiogenesis (formation of new blood vessels) within tumors [106,175]
and surrounding tissues [87], as well as its modulation of MMP9 and MMP13 and cathepsin,
enzymes involved in extracellular matrix degradation [180,181].

2.6. Vitamin D Sufficiency—Protective Against Cancer

The incidence and severity of breast cancer are inversely associated with serum
25(OH)D levels, especially in post-menopausal women [106,107]. In addition, meta-
analyses have reported the improved survival of persons with breast cancer when
they maintained higher circulatory 25(OH)D concentrations [108]. Using similar data
sets, however, others reported no benefit from vitamin D in breast cancer risk reduc-
tion [45,93,94,149,152,182-184].

Hypovitaminosis D has been associated with an increased risk of developing and
dying of certain cancers [185-187]. However, maintaining serum 25(OH)D concentrations
above 40 ng/mL significantly reduces the risks of cancer invasion [40] and cancer-related
mortality [40,188]. Individuals residing at higher latitudes face an increased risk of de-
veloping and dying from common cancers [189,190], including those affecting the colon,
breast, and prostate [189-196]. Conversely, increased exposure to solar UVB radiation is
associated with decreased risks of developing and succumbing to breast, colon, ovarian,
and non-Hodgkin lymphoma cancers [197,198].

2.7. Effectiveness of Vitamin D in Different Cancer Types

Numerous theories have been suggested to explain how vitamin D reduces cancer
risks [166,198-200]. These include the impact of adequate intracellular calcitriol levels,
which increase the expression of protective genes. Additionally, calcitriol inhibits tumor pro-
gression and enhances survival, particularly in tumors exhibiting high vitamin D receptor
(VDR) expression [201,202]. Calcitriol increases VDR expression in immune cells [203,204].
Table 2 outlines diverse aspects of cancer along with corresponding references.
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Table 2. Vitamin D and its relation to various cancers and supporting references.

Cancer Type References
All cancers [94,147,187,189,190,192-195,205-221]
Breast cancer and survival [150,151,163,189,190,192-194,215-220,222-229]
Colorectal cancers [89,90,109,150,151,163,189,190,192-194,229-234]
Gastric cancers [235-238]
Oral and nasopharyngeal carcinomas [239,240]
Lung cancer [241,242]
Pancreas and esophagus [243-245]

Non-Hodgkins lymphoma

[119,246-251]

Melanoma [1,103,252-255]
VDR polymorphisms [211,256-260]
Cancer mortality [39,41]
Relationship to living in higher latitudes [89,107,189,190,261-267]
Relationship to serum 25(OH)D levels [89,163,168,187,195,206-209,224-226,268-271]
[70,167,168,272]
UVB/sun exposure and cancer reduction [70,88,89,110,168,187,189,190,192-194,261-263,273-284]
Cancer metastasis [285-288]

2.8. Ultraviolet B, Vitamin D, and Prevalence of Cancer

Research indicates that exposure to ultraviolet B (UVB) rays reduces the risk of vari-
ous types of cancer [1,163,289-292]. Calcitriol has been shown to enhance the expression
of protective microRNA-22 in colonic cells, thereby reducing colon cancer cell prolifera-
tion [293]. Vitamin D sufficiency also supports healthy intestinal microbiota [294], which
may help reduce the risk of colon cancer [295]. Additionally, an inverse correlation has
been noted between UVB radiation and mortality in individuals with several malignan-
cies, including bladder, esophageal, kidney, lung, pancreatic, rectal, stomach, and cor-
pus uteri cancers [195], often linked to inadequate sun exposure, particularly at higher
latitudes [261-263].

Research from Nordic countries, including Sweden [296], has also shown an inverse
association between UVB exposure and cancer risk [163,289,290]. Higher UVB exposure
is also correlated with longer life expectancy [297]. However, it remains unclear whether
this is solely due to UVB or influenced by other healthy lifestyle factors [292]. For example,
people in higher latitudes of Europe consume more fish and meat, which contain 25(OH)D,
acting as a confounding factor [298,299]. They also tend to lead healthier lives and consume
more fatty fish, thereby increasing their omega-3 fatty acids and vitamin D [300], which
may reduce cancer risk and mortality, as well as enhance longevity [166,297,299,300].

2.9. Sun Exposure, Genetics, and Skin Cancer

Ultraviolet radiation, a component of the electromagnetic spectrum naturally emitted
by the sun or generated artificially (e.g., through tanning devices), can induce exposure-
dependent skin reactions. These reactions include erythema, sunburn, skin wrinkling, and
DNA damage to dermal cells [284,301]. Prolonged and frequent exposure to ultraviolet
radiation is a primary factor contributing to skin cancers, including cutaneous malig-
nant melanoma, basal cell carcinoma, and squamous cell carcinoma [103]. Consequently,
avoiding excessive exposure to sunlight may lead to sunburn [1].
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Skin cancers are common among individuals with white skin who have freckles. This
skin type is more vulnerable to developing, representing this group’s most frequent genetics-
related skin cancer type [301]. In addition, excessive sun exposure during childhood can
cause lasting damage, with adverse effects appearing later in life. The risk is higher in
those with freckled skin [77], suggesting underlying genetic susceptibility. The majority of
sun-induced skin cancers are observed in individuals residing in areas where their skin
phenotype is not optimally adapted to elevated levels of ultraviolet radiation, for example,
people of European descent living in Australia.

Over generations, these fair-skinned individuals, whose ancestors migrated from
central Africa to regions such as Europe, the United States, and later to Australia and New
Zealand, have adapted to having lighter skin to generate more vitamin D from lesser UVB
exposure. However, when exposed to higher duration and intensity of UV rays, they face a
heightened risk of developing skin cancer [77]. People with darker skin in Africa do not
use sunscreen, yet have lower rates of skin cancer and melanoma [301].

2.10. Sun Exposure Reduces Cancer Risks

Several epidemiological studies have linked reduced sun exposure—and the result-
ing low serum 25(OH)D concentrations—to higher incidences of breast cancer [224-226].
Researchers have observed similar correlations in colon, prostate, and ovarian cancers, as
well as in non-Hodgkin lymphoma and certain types of leukemia [302,303]. Additional
studies have reported strong inverse associations between UVB exposure and the risk of
ovarian [304] and esophageal cancers [87,305]. These findings align with the observed in-
crease in cancer prevalence among people living in northern latitudes, where sun exposure
is limited [89,265-267].

Additional data suggest that individuals regularly exposed to sunlight are less likely
to succumb to cancer [31,99,119]. Consequently, the findings indicate that the serum
is maintained at a higher level. The best strategy to ensure adequate 25(OH)D levels
is to promote reasonable, intentional sun exposure, recognizing individual variability
in requirements. Applying sunscreen after sun exposure helps prevent sunburn while
allowing benefits [284,306]. Meanwhile, individuals should avoid tanning beds, as they
can lead to excessive exposure to both UVB and UVA radiation. The latter could increase
cancer risk and also accelerate vitamin D catabolism [307]. It remains unclear whether
these benefits arise solely from raising and maintaining circulating 25(OH)D levels or if
sun exposure provides additional protective effects against cancer.

Recurrent inflammation following sunburn has the potential to trigger a detrimental
cycle, culminating in skin fibrosis and an increased risk of cancer [301]. This risk is par-
ticularly notable in individuals with lighter skin tones who are genetically predisposed
(e.g., those with freckles, as noted above). Notably, consistent exposure to sunlight, in-
cluding among those who work outdoors or participate regularly in outdoor physical
activities [308,309], has been reported to diminish the risk of melanoma [1,252]. This
observation suggests that the risk of melanoma does not necessarily increase with sun
exposure [281-283].

2.11. Additional Mechanisms of Vitamin D in Cancer Risk Reduction

Calcitriol has been shown to reduce cell proliferation and induce apoptosis [310],
promote autophagy, and inhibit the growth of cancer cells. It also modulates the immune
system to counter cancer progression, indicating that vitamin D suppresses cancer growth
and metastasis [272]. Additional mechanisms involve 1,25(OH),D-mediated reductions
in proliferation, angiogenesis, and growth, alongside enhanced differentiation, and anti-
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inflammatory effects [84,209]. These pathways collectively increase apoptosis and reduce
cancer cell metastasis [285,287,288].

Some of vitamin D’s beneficial effects are mediated through the stabilization of mi-
tochondrial functions and suppression of oxidative stress (reactive oxygen species) via
multiple mechanisms [311]. Furthermore, calcitriol plays a crucial role in intracellular cal-
cium mobilization, which has been linked to the pathophysiology of various extraskeletal
conditions, including cancer cell growth and metastasis [156,191]. Vitamin D regulates
oxidative stress, inflammation [312-314], and energy metabolism [75,315]. Inflammaging
and oxidative stress are linked to cancer [316]. These mechanisms and enhanced DNA
repair [317] are crucial for reducing the risk of cancer.

Additionally, vitamin D metabolism is influenced by medications, environmental
pollutants that affect the cytochrome P450 system, and lifestyle factors such as physical ac-
tivity (sedentary vs. being active) [300,308,309], which impact energy balance [318]. When
designing clinical studies, including RCTs, and managing patients, healthcare professionals
must consider these factors and tailor their approaches to optimize patient outcomes. In
addition, specific VDR gene variants or polymorphisms may influence cancer incidence,
severity, and mortality [319]. However, as discussed in Sections 1.1 and 3.4 [256-259]
RCT data are limited and insufficient for firm conclusions. Further studies are needed to
understand how polymorphisms in the VDR and other vitamin D-related genes, as well as
epigenetic changes, affect cancer risk [256,260,320].

In several diseases, RCT evidence more strongly supports the use of vitamin
D for prevention than for treatment [39,151,221,321], whereas in cancer, it is the
opposite [91-94]. Complicating the matter, an RCT in colorectal adenoma reported that the
beneficial effect of vitamin D3 supplementation varies with VDR genotypes. The risk was
found to be reduced in individuals with advanced adenoma who had the VDR rs7968585
AA genotype, while an increased risk was observed in those with the VDR rs7968585
GG/GA genotypes [322]. However, others have reported an inverse association between
circulating 25(OH)D levels and colorectal adenoma risk [150], but not with VDR gene
polymorphisms (Folk and Bsml) [319].

3. Cancer Mortality Relationships

Numerous studies have confirmed a strong association between vitamin D status
and mortality from most cancers [91-94]: cancer risk reductions were less robust. Most
observational studies and meta-analyses have reported associations between lower serum
25(0OH)D levels and higher overall cancer mortality [91-94]. A meta-analysis of twelve
cohort studies reported a 14% higher cancer mortality in people with the lowest quarter of
25(0OH)D levels vs. the highest quarter [92]. Additionally, the Prostate, Lung, Colorectal,
and Ovarian Cancer Screening Trial found a 17% lower cancer mortality rate among men
and women in the highest quartile of vitamin D intake compared with those in the lowest
quartile [323].

3.1. Major Challenges Associated with Nutrient Clinical Trials

As described in this section, nutrient clinical trials face several major challenges that
limit their reliability and applicability, especially when using methods like RCTs. Unlike
pharmaceutical trials, nutrients often exhibit nonlinear dose-response relationships with a
threshold effect, delayed or cumulative effects, and strong baseline dependency, meaning
benefits primarily occur in individuals with prior deficiencies. Additionally, controlling
dietary intake over extended periods is difficult, and ethical constraints prevent researchers
from inducing deficiencies to establish controls. RCTs, while they used to be considered
the gold standard in drug testing, are often poorly suited for studying nutrients due to
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their complex interactions with genetics, environment, lifestyle, and co-nutrient status.
These factors, combined with funding limitations and variability in nutrient bioavailability,
complicate trial design, data interpretation, and generalizability of results.

3.2. The Factors Hindering Large Vitamin D RCTs from Generating Meaningful Data

Recently published large RCTs related to vitamin D, such as the VITAL study
(2000 IU/day for 5.3 years) [45,324], the Vitamin D to Improve Outcomes by Leverag-
ing Early Treatment (VIOLET) RCT (single dose of 40,000 IU in critically ill patients) [325],
the Vitamin D Assessment (ViDA) study (single, monthly doses of 200,000 IU) [326], the
D2d study (focused on cancer and pre-diabetes) [327], and the Vitamin D on All-Cause
Mortality in Heart Failure (EVITA) study (4000 IU/day) [328], all exhibited significant
study design limitations [44,47,49,53]. Like the WHI [151] and VITAL study [45,324], sev-
eral other large, mega RCTs enrolled vitamin D-sufficient subjects and allowed participants
to consume over-the-counter supplements [47], including vitamin D [47,53]. These study
designs introduced limitations and misalignments, which significantly reduced the effect
size and undermined their statistical power to differentiate between the intervention and
placebo groups [43].

Given the above-mentioned significant study design limitations that are present in
recent mega-RCTs, their conclusions cannot be relied upon [53]. Furthermore, it is unsur-
prising that the results of clinical studies have also exhibited variations based on other
factors, such as the type of cancer, time of diagnosis, study design, follow-up duration,
serum 25(OH)D status, and the inherent biases of investigators [43]. The VITAL study [45]
serves as a clear example [155], containing several inherently imperfect design elements
that led to misleadingly unfavorable primary outcomes [43]. Studies using sub-optimal
vitamin D supplements, such as 1000 IU, to assess the effect of altering the recurrence rate
of colorectal adenomas (supplementation of vitamin Dj, calcium, or both for 3 to 5 years)
is another classic error in study strategy that was designed to fail [329]. The design of
these studies contains multiple preventable errors, which contribute to and perpetuate
erroneous conclusions.

3.3. Negative RCT5 Do Not Mean That the Nutrient Is Not Efficacious

Many negative RCTs have had design flaws, including improper randomization,
insufficient vitamin D doses, lack of serum 25(OH)D targets, allowing over-the-counter
supplements, or a failure to focus on vitamin D as the primary intervention (see Section 1.1).
As a result, it is not surprising that such studies did not show positive outcomes regarding
cancer or other non-musculoskeletal disorders, even with adequate vitamin D [330]. These
studies underscore the need for more targeted, hypothesis-driven clinical research to
explore the relationship between cancer biology and the effects of vitamin D [43]. In
addition, although researchers once considered RCTs part of the hierarchy in clinical trial
research methodologies, they do not represent the most appropriate or feasible study design
for answering nutritional epidemiologic questions about the long-term effects of specific
foods or nutrients [331].

In contrast, epidemiological studies have reported that vitamin D deficiency is asso-
ciated with a higher risk of certain types of cancer [94,107-109,149,169,170]. In addition,
numerous epidemiological studies have reported the beneficial effect of vitamin D in reduc-
ing cancer risk (incidence) and mortality [94]. A pooled analysis of RCTs and cohort studies
suggested that 25(OH)D serum concentrations >40 ng/mL are associated with a significant
reduction in the risk of various invasive cancers [107]. Therefore, the reported results from
studies using vitamin D supplements of less than 5000 IU per day (the failure to increase
the dose with body weights higher than 70 kg) and using a minimum serum 25(OH)D
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level of less than 40 ng/mL should be interpreted cautiously, as they are suboptimal for
reducing cancer risk and mortality [43]. Meanwhile, other studies have reported no benefits
of vitamin D in cancer [45,93,152,182,183].

3.4. Rethinking Research Methods: Limitations of RCT5 in Micronutrient Evaluation

Hebert et al. addressed several correctable methodological and design challenges
in diet-related clinical research, including limitations in measurement techniques, ana-
lytical approaches, and the inherent difficulty of establishing true placebo groups [332].
Additionally, a growing body of robust scientific evidence underscores the fundamen-
tal physiological differences between pharmaceutical agents and micronutrients [44,54],
emphasizing that RCTs are not the most appropriate methodology for evaluating mi-
cronutrient efficacy [331]. Nonetheless, many researchers persist in applying RCT de-
signs to such assessments [43,50]. Several recent reviews have clearly articulated these
distinctions [333-336].

Unlike pharmaceuticals, which typically exhibit linear, dose-dependent responses
suited for RCT frameworks [333], micronutrients such as vitamin D follow non-linear,
threshold-response curves [49]. Once individuals reach physiological sufficiency, fur-
ther intake yields little or no additional benefit—an effect that RCTs fail to capture
effectively [43,332]. As Heaney (2014) noted, this threshold behavior, along with other bio-
logical and methodological factors, renders traditional RCT and Mendelian randomization
designs inappropriate for evaluating micronutrient interventions [333].

RCTs were developed with the primary aim of evaluating pharmaceutical drugs in
terms of efficacy and safety. While RCTs remain invaluable in pharmaceutical clinical re-
search, their direct application to nutrient science may not always be
appropriate [42,43]. However, over time, the use of RCTs in this context has become
more widespread, influenced by established research frameworks and funding models that
traditionally emphasize pharmacological interventions [331]. This trend may also reflect
a broader reliance on methodologies suited to drug development, which do not always
account for the complex, systemic roles of micronutrients in human physiology.

4, Broader Outcomes from Vitamin D Clinical Studies

Observational studies are better suited for investigating the biological mechanisms by
which vitamin D influences cancer risks (see Section 2.4). Studies indicate that persistent
vitamin D deficiency is linked to higher cancer rates [87,136]. Data indicate that maintaining
serum 25(OH)D levels above 40 ng/mL through UVB exposure or supplements significantly
reduces cancer risks [75,137] and cancer-related mortality [39,41]. Meta-analyses show that
increasing vitamin Dj intake by 1000 IU per day reduces the risk of colorectal [109] and
breast cancer [150,163,229] by 50%. Lower doses, such as 400 IU daily, have also been
shown to reduce the risks of pancreatic and esophageal cancers [245] and non-Hodgkin
lymphoma [119,246,247]. However, recent studies suggest that most cancers require main-
taining serum 25(OH)D levels above 50 ng/mL (preferably over 60 ng/mL) for effective
risk reduction [41,83,221].

4.1. Effects of Vitamin D on Preventing Specific Cancer Types

Vitamin D has been shown to play a role in reducing the risk of several specific cancer
types, including colorectal, breast, and prostate cancers (Table 2). Observational studies
and meta-analyses suggest that higher serum 25(OH)D levels are associated with lower
incidence and mortality rates for these cancers. Vitamin D may exert its protective effects
through multiple coordinated mechanisms, such as the promotion of cellular differentiation,
inhibition of proliferation, reduction of inflammation, and enhancement of immune surveil-
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lance. RCTs have yielded mixed results—often due to the inclusion of vitamin D-sufficient
subjects and suboptimal dosing or vitamin D-sufficient participants. Nevertheless, several
post-hoc analyses, even with the VITAL study, have revealed significant reductions in
cancer incidence, particularly in non-obese individuals and individuals with low baseline
vitamin D status. Outcomes from specific types of cancer are described below.

Breast cancer: Several studies with improved designs have shown a significant inverse
relationship between serum 25(OH)D concentrations and survival among female breast
cancer patients [87,215-218]. Data from ambulatory post-menopausal women across seven
consecutive National Health and Nutrition Examination Surveys (NHANES) from 2001
to 2014 indicated that serum 25(OH)D concentrations >40 ng/mL were associated with
a notable reduction in breast cancer risk [218]. Comparable results have been noted in
African American and Hispanic women [228]. Additionally, other studies have reported
low serum 25(OH)D levels in individuals with breast cancer [219,220].

Colorectal cancer: Lower 25(OH)D levels at the time of diagnosis of colorectal cancers
are associated with higher overall mortality from colorectal cancer [232]. Similarly, findings
indicated a 41% lower risk of colorectal cancer in African American women with the
highest levels of 25(OH)D compared with those in the lowest quartile [234]. In two studies,
greater overall vitamin D intake was associated with a lower risk of early-onset colorectal
cancer [337] and all colorectal cancer [109,119,150,233].

Gastric cancer: A meta-analysis found no correlation between vitamin D intake
or serum 25(OH)D concentrations and gastric cancer. However, a significant inverse
association was observed between solar UVB radiation exposure and gastric cancer inci-
dence [87,235]. Conversely, many studies have reported that higher serum 25(OH)D levels
are linked to a significantly lower incidence of gastric cancer [236]. Another meta-analysis
indicated that serum 25(OH)D levels in the gastric cancer group were significantly lower
than in the control group, with low levels associated with poorer clinical outcomes [237].
Additional studies support the association between higher vitamin D intake and a reduced
risk of gastric cancer [238]. Collectively, these data suggest that hypovitaminosis increases
vulnerability to gastric cancer.

Thyroid cancer: In papillary thyroid carcinoma, lower serum 25(OH)D levels are
correlated significantly with poor prognostic factors, such as large tumor diameter and
lymph node metastasis [338]. Mean serum 25(OH)D levels at cancer diagnosis were found
to be significantly lower (22.4 ng/mL) compared with cancer-free controls (30.1 ng/mL),
with a higher incidence observed in African American children [339].

Prostate cancer: Additionally, a community-based, extensive prospective study with
competing risk analysis reported an elevated risk of developing prostate cancer in the
highest 25(OH)D tertile (15%) (hazard ratio of 1.35 [95% CI = 1.07-1.70]). Conversely, death
rates were high in the lowest 25(OH)D tertile (67%) (HR ratio, 0.79 [95% CI, 0.71-0.89]) [340].
The discrepancy is explained by marked fluctuations of intracellular 1,25(OH),D levels
within the prostate and pancreas, rather than elevated levels, which are responsible for the
increased mortality rates observed in a limited number of individuals.

4.2. Miscellaneous Cancers

In hematologic malignancies, low 25(OH)D levels predict poor outcomes in myeloid
and lymphoid cancers, as well as several types of lymphomas. These were linked to
unsuccessful autologous and allogeneic transplants [251]. Regarding lung cancer, a meta-
analysis indicated that vitamin D reduces the incidence of lung cancers and improves
long-term survival [289]. Besides, a prognostic study suggested that the survival benefits of
vitamin D supplements were observed in individuals receiving therapies for stage IV lung
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cancer [241]. The author proposed that these benefits may, in part, stem from alleviating
inflammation and depression in these patients.

Nevertheless, dietary and supplemental vitamin D may not reduce the risk of obesity-
related cancers [300], but this lack of response is unsurprising. In addition to other obesity-
related overriding factors, such as low-grade generalized inflammation, the dose of vitamin
D required for individuals with obesity is several times higher than for those with normal
body weight or BMI [33,55,146]. Individuals with hypovitaminosis D who developed
nasopharyngeal carcinoma are shown to have a significantly higher risk, which is worsened
in those with a BMI >28 [239]. Hypovitaminosis D also increases the risk of developing
oral squamous cell carcinoma from potentially malignant oral disorders [341]. The author
suggested modulating immune responses with vitamin D and other appropriate micronu-
trients as an adjunct therapy to increase survival, prevent recurrences in those undergoing
surgery, and reduce adverse reactions to chemotherapy.

4.3. Epidemiological and Meta-Analysis Data

A 14-year follow-up study examining cancer incidence in male health professionals
using a “vitamin D index” (incorporating both oral intake and vitamin D production)
revealed a significant relative risk reduction for esophageal, oropharyngeal, colorectal, and
pancreatic cancer. Among various responsive cancers, breast and colorectal cancers met
the Bradford Hill criteria for causality [109,119]. At the same time, bladder, esophageal,
gastric, gallbladder, ovarian, rectal, renal, Hodgkin’s [342], and non-Hodgkin’s lymphoma
provided reasonable supportive evidence [343].

Individuals with breast cancer exhibited a higher prevalence of vitamin D deficiency
compared with an age-matched control population, indicating an increased risk of breast
cancer associated with hypovitaminosis D [344]. In eleven case-control studies span-
ning seven countries, inverse correlations have been documented between breast cancer
incidence and serum 25(OH)D concentrations [88,321,344]. Additionally, using pooled ran-
domized data, other studies have suggested that serum 25(OH)D concentrations exceeding
60 ng/mL provide the most protective effects [41,83].

Having sufficient 25(OH)D concentrations (i.e., above 40 ng/mL) reduces the risk
of cancer and lowers cancer-related mortality [59,137,168,345,346]. For instance, adults
who had regular sunlight exposure over two decades and maintained serum 25(OH)D
concentrations greater than 20 ng/mL experienced a 30% and 50% risk reduction for
colorectal [109,150] and breast cancers [268,269,271,345]. The response rate will likely be
higher if serum 25(OH)D concentrations exceed 40 ng/mL [39-41].

4.4. Correlations of Serum 25(0OH)D Levels with Cancer Incidence

Many clinical studies have reported that higher serum 25(OH)D concentrations are
associated with risk reductions, as seen in colorectal [109], bladder [347], and breast can-
cers [106-108]. In contrast, the risks of some cancers have shown little association with
the lungs and other less common cancers [184,266,348]. Whereas a few cancers, like
prostate [349] and pancreatic cancer [243,244], have a potentially detrimental effect of
having higher serum 25(OH)D levels. See Section 4.6 for this data.

Another meta-analysis (n = 18,808; median age 60 years) of 30 RCTs reported that
vitamin D supplementation with a median follow-up, ranging between 1 and 6.2 years,
had no significant effect on cancer incidence (RR: 1.03; 95% CI: 0.91, 1.15) or cancer-related
mortality (RR: 0.85; 95% CI: 0.70, 1.04) [152]. This SR included several RCTs with short
follow-up periods, making it challenging to assess vitamin D’s impact on cancer suppres-
sion. In general, lower serum 25(OH)D levels show a strong correlation with increased
cancer incidence and other chronic diseases [20,34,35].
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Prospective and retrospective epidemiologic studies indicate that levels of 25(OH)D
(and D3) below 20 ng/mL are associated with a 30 to 50% increased risk of incident colon,
prostate, and breast cancer, along with higher mortality from these cancers [172,350,351].
Others have reported that postmenopausal women who increased their vitamin D3 intake
by 1100 IU reduced their relative risk of cancer by 60 to 77% [89]. Similarly, another study
reported a progressive decline of 25(OH)D during the development of cirrhosis into fibrosis
and liver cancer [352].

Utilizing annual average erythemal UV doses measured by a NASA satellite, cancers
of the bladder, esophagus, colon, gallbladder, prostate, vulva, rectum, Hodgkin’s lym-
phoma [342], and multiple myeloma were found to exhibit the strongest correlations with
UVB exposure [353]. Furthermore, this study reinforced the notion that observational study
data, supported by meta-analyses, help establish dose-response relationships for serum
25(OH)D concentrations, demonstrating risk reductions for colorectal [109] and breast can-
cers [354,355]. Additionally, a significant risk reduction was reported in a meta-analysis of
10 case-control studies (8243 cases and 9697 control subjects) conducted in the United States,
Europe, and Australia (the high exposure group, with a confidence interval of 0.63-0.91;
p =0.01) [356].

In another study, postmenopausal women who received a daily combination of
2000 IU of vitamin D3 and 1500 mg of calcium reported a 60% reduction in cancer in-
cidence over four years [39,147]. Using Cox proportional hazard regression [HR = 0.7 (95%
CI: 0.47-1.02)], the effectiveness of calcium plus vitamin D, compared with a placebo, was
suggestive but did not reach statistical significance for reducing cancer risk. Besides, recent
data from the same group, using an intention-to-treat analysis, failed to support these
findings [39], though the interpretation of this study remains controversial. Notably, online
supplementary data demonstrated a significant reduction in cancer incidence among those
who sustained serum 25(OH)D concentrations between 50 and 80 ng/mL [39-41].

4.5. Melanoma and Insulin-like Growth Factor

The incidence of melanoma is higher in individuals with elevated serum insulin-
like growth factor-1 (IGF1) concentrations [357]. Notably, the serum IGF-1 concentration
positively correlates with dietary fat and protein intake [300] in conjunction with physical
activity [299,308], placing those who regularly consume meat at a heightened risk for
such cancers [358,359]. Conversely, higher serum 25(OH)D concentrations at the time
of melanoma diagnosis are associated with thinner tumors and an increased chance of
survival [255]. This suggests that individuals with melanoma or those at an elevated risk of
melanoma may benefit from maintaining higher serum 25(OH)D concentrations [103,255].

Vitamin D and its metabolites are used topically to regulate cell differentiation and
modulate the immune response. One example is calcipotriene (calcipotriol ointment or
cream), used to treat skin disorders, notably psoriasis [102,360]. A retrospective study from
Barcelona reported that lower vitamin D levels were independently associated with worse
survival in melanoma patients [253]. Another Spanish study found that low vitamin D
levels are associated with ulcerations in melanoma and serve as an independent prognostic
factor for overall survival in this disease [254].

4.6. Prostate Cancer Risks and a | or U-Shape Curve

Several publications, including a meta-analysis, report a potential increase in prostate
cancer risk associated with maintaining higher serum 25(OH)D concentrations [361-363].
Although controversial, some researchers attribute the reported J-shaped curves to fluc-
tuations in intraprostatic 1,25(0OH);D concentrations rather than serum 25(OH)D lev-
els [364,365]. Others argue that elevated serum calcitriol enhances intestinal calcium
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absorption, which raises intracellular calcium levels in prostatic cells—a risk factor for
prostate cancer [366]. Additionally, several studies, including an SR, suggest that higher
dairy intake may increase prostate cancer risk [367], though this observation does not
clarify why only the prostate appears affected.

Additional studies show that both African American and European American men
with prostate cancer who have higher calcium-to-magnesium (Ca: Mg) ratios or consume
whole milk face an increased risk of developing aggressive prostate cancer [368]. In
another study, men consuming more than 600 mg of calcium per day from dairy products
(equivalent to <0.5 versus >2.5 daily servings) exhibited a 32% higher risk of prostate
cancer compared with those consuming less than 150 mg/day (95% CI: 1.08, 1.63) [369].

These findings indicate a possible link between dairy products, due to calcium, and
increased prostate cancer risk. However, the specific constituents of dairy products that
contribute to this association remain unidentified. It is essential to acknowledge that several
additional cancer risk factors, including genetic susceptibility, environmental pollution,
exposure to radiation, chemicals, viruses, sedentary lifestyle, and obesity [164], have not
been fully considered in these studies.

4.7. Prevention of Cancer Risk Reduction

Cardiovascular disease and cancer remain the two leading causes of death in America,
together accounting for nearly half of all annual fatalities. While genetic and familial factors
may contribute to them, chronic inflammation, oxidative stress—regulated by the immune
system—and immune dysregulation increase vulnerability and drive both conditions. Poor
dietary habits also play a significant role, fueling not only these two diseases but many
others as well. Because numerous natural substances, including nutrients and nutraceuti-
cals, exhibit anti-inflammatory and antioxidant properties, healthcare professionals can use
holistic and orthomolecular medical approaches as complementary therapies to lower the
risk and mortality associated with cancer [221].

Higher vitamin D levels have been consistently associated with a reduced risk of
colorectal cancer [109,347], while lesser effects have been observed in bladder cancer [347].
Meanwhile, other studies have reported no association between vitamin D levels and the
risk of breast, lung, and other less common cancers [184,266]. Others have speculated on
the differing prevalence of vitamin D deficiency among racial or ethnic groups, suggesting
it might partly contribute to cancer disparities [370,371]. 2011-2014 NHANES data report
the presence of severe vitamin D deficiency, with a serum concentration of 25(OH)D that
is less than 12 ng/mL in 18% of non-Hispanic Black people, 2% of non-Hispanic White
people, 8% of non-Hispanic Asian people, and 6% among Hispanic people (4). Meanwhile,
African Americans are less likely to use vitamin D supplements than White people in the
US [372].

The American Institute for Cancer Research estimates that 30% to 50% of the most
common cancers could be prevented through lifestyle modifications [299,373,374]. Table 3
provides examples of these recommendations.

Table 3. Lifestyle modification factors have been shown to reduce the risk of cancer.

Recommendation Reference Recommendation Reference
P . Avoiding all forms of smoking and exposure
Maintaining a healthy weight at any age [299] to second-hand smeke [299]
Engaging in regular physical activity [308,309] Breastfeeding infants
Adopting a healthy diet, like the [300] Protecting the skin from excessive [299]
Mediterranean diet - sun exposure
Avoidance or limiting alcohol intake to one [299] Being vaccinated against hepatitis B and HPV [375]

drink per day for women and two for men
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In addition to adhering to these lifestyle guidelines [299] and maintaining a balanced
diet [300], physical activity [308] and nutritional therapies [376] can be supplementary in
reducing chronic conditions, including cancer risks [309]. These include type 2 diabetes
and cardiovascular and chronic respiratory diseases [374,377]. Additionally, such measures
can enhance the outcomes and quality of life for cancer survivors. Collectively, these non-
communicable diseases, including cancer, are responsible for over 70% of global deaths.

4.8. Clinical Trials on Cancer Prevention

Even in the context of the poorly designed VITAL study [45,155,324], after excluding
data from the first year (given that it takes several months for such a small dose to increase
serum 25(OH)D concentration), there was a notable 25% reduction in cancer incidence
observed among individuals with a BMI < 25 and among African Americans [378]. This
analysis also revealed a significantly lower rate of cancer-related mortality with vitamin D
compared with placebo, as indicated by hazard ratios of 0.79 [95% CI, 0.63 to 0.99] and 0.75
[95% CI, 0.59 to 0.96], respectively.

Numerous peer-reviewed studies support the role of vitamin D in cancer prevention,
particularly when serum  25(OH)D levels are maintained above
40 ng/mL [312,355,379]. Garland et al. (2007, 2011) demonstrated that serum 25(OH)D
concentrations >52 ng/mL were associated with a 50% lower risk of colorectal cancer
compared with levels <13 ng/mL [313,314]. Similarly, Lappe et al. (2007) found that daily
supplementation with 1100 IU of vitamin D3 plus calcium reduced cancer incidence by
60% in post-menopausal women [89]. A meta-analysis by Vaughan-Shaw et al. (2017,
2021) reinforced these findings, showing that higher pre-diagnostic 25(OH)D levels sig-
nificantly improved cancer survival [380,381]. These studies demonstrate that achieving
vitamin D sufficiency—through sun exposure or supplementation—is a cost-effective and
evidence-based strategy to reduce cancer risk and mortality.

These studies have provided overwhelming evidence that hypovitaminosis D signifi-
cantly increases vulnerability, causing complications and deaths from COVID-19 that fulfill
Bradford Hill’s criteria for causality [56,119,138,139]. Other diseases that fulfill these criteria
for increased risk of other diseases include multiple sclerosis [55,56,138,139], periodon-
tal disease [55,56,138,139], infection and autoimmunity [8], and cancer [87], particularly
against several significant cancer types [87].

5. Improving Clinical Outcomes

Maintaining sufficient serum vitamin D and 25(OH)D levels is crucial for the intra-
cellular conversion of these precursors into the active form, 1,25(OH),D (calcitriol). They
enable it to exert its intended modulatory effects on mitochondrial activity, enzymatic
reactions, signal transduction, and hormone synthesis and secretion in target cells [382].
These effects extend to various systems, including the insulin and parathyroid hormone
(PTH), the renin-angiotensin—aldosterone system, and the FGF23—Klotho system.

The evidence strongly suggests that different diseases require distinct serum 25(OH)D
concentrations to achieve clinical benefits and prevent sequelae associated with hypovi-
taminosis D [27,74,75]. Consequently, there is no agreed-upon universal optimal serum
25(OH)D concentration that ensures all beneficial outcomes [75,383]. Consequently, there is
no agreed-upon universal optimal serum 25(OH)D concentration that ensures all beneficial
outcomes. Insights from metabolomics, transcriptomics, and adequate supplementation
studies promise better information on longer-term extra-skeletal benefits. Additionally,
adequate vitamin D supplementation offers the potential for personalized, targeted inter-
ventions to mitigate skeletal and soft tissue health risks cost-effectively [19,384].
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Earlier studies on vitamin D and CVD, based on older protocols with lower sup-
plementations, such as 2000 IU/day, have been reported to reduce the risk of CVD and
related mortality [385,386]. However, more recent evidence indicates that higher daily
doses—particularly above 5000 IU—and maintaining serum 25(OH)D concentrations be-
tween 40 and 80 ng/mL yield better clinical outcomes than said lower daily doses [50].
That includes higher doses providing greater protection—lower risks, and mortality rates
from CVD and other chronic diseases [33,34]. The same principles apply to vitamin D and
cancer [321,387-389].

In the absence of adequate exposure to sunlight, raising and maintaining blood levels
of 25(OH)D above 40 ng/mL (75 nmol/L) in most individuals will require a daily minimal
oral intake of 6000 IU (125 pg) of vitamin D3, with a safe upper limit for longer-term
use of 15,000 IU per day [124-126,128]. In contrast, obese people require three to four
times the above-mentioned dose to maintain a therapeutic blood 25(OH)D concentration
to lower risks and mortality [40,41,388]. Nevertheless, for overall protection from all
diseases (robust immunity against infections, cancer, autoimmunity, and heart disease)
and to reduce all-cause mortality, the author recommends maintaining longer-term serum
25(OH)D concentrations above 50 ng/mL [44,50,54-56,129-131].

5.1. Varying 25(OH)D Levels Required for Preventing Different Diseases

Numerous extra-skeletal disorders, including type 2 diabetes [390], metabolic syn-
drome [391], and all-cause mortality [392,393], demonstrate positive responses when main-
taining serum 25(0OH)D concentrations above 40 ng/mL [74,165,188,222]. This is functional
but not at the minimal physiological level. It is necessary to maintain serum 25(OH)D
concentrations above 40 ng/mL to achieve many benefits from vitamin D, particularly
in cancer and autoimmunity [39,75,86], preferably above 50 ng/mL [33,49,55,394,395].
Figure 2 summarizes the varying steady-state serum 25(OH)D concentrations required to
prevent or mitigate the effects of common diseases.

80 Cluster headache, Psoriasis, Multiple sclerosis,
ng/mL autoimmune disorders (MS) , Sleep, etc.

Robust innate & adaptive immune systems:
(Sepsis, COVID-19, cancer)

Metabolic disorders (obesity & diabetes),
cardiovascular diseases, all-cause mortality

Osteoporosis, fractures, inflammatory bowel
diseases, secondary hyperparathyroidism

Muscular functions: balance and reflexes
(falls & injuries)
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Figure 2. Different diseases (and tissues) require different steady-state serum 25(0OH)D concentrations
to achieve improvement. Minimum serum 25(OH)D concentrations are necessary to prevent or allevi-
ate common diseases. Each column indicates the relationships between various disease states and
the approximate minimum serum 25(OH)D concentrations required to improve different conditions
(modified from Wimalawansa, S.J., 2023 [33]).
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Estimates suggest that doubling the population’s serum 25(OH)D concentration could
significantly reduce morbidities and decrease all-cause mortality [184,185]. Vitamin D’s
role in promoting protein stabilization and reducing oxidation-related damage contributes
to enhanced longevity and reduced healthcare costs. The current study shows that the most
substantial health—economic benefits are observed when serum 25(OH)D concentrations
are elevated and maintained above 40 ng/mL (100 nmol/L) [396]. A comprehensive review
emphasizes the importance of providing balanced information on the costs and benefits
and appropriate use of vitamin D supplements, as well as safe sun exposure, to the public,
particularly for healthcare workers and policymakers [191,317,397,398].

5.2. The Role of Vitamin D-Binding—Protein in Cancer

Vitamin D-binding protein (VDBP), the carrier of vitamin D and its metabolites, plays
a crucial role in maintaining these metabolites in circulation, transporting them to cells, and
promoting health. Both vitamin D deficiency and VDBP status influence biological activities.
Consequently, deficiency or abnormalities in VDBP unsurprisingly affect the function of
vitamin D. For example, low levels of VDBP increase the onset as well as the aggressiveness
of malignancy, as reported with breast, prostate, and colorectal [352,399,400].

Additionally, low VDBP levels are linked to certain cancers, including breast, col-
orectal [150], and prostate [352,399,400]. Although the estimated influences are weaker,
studies are examining whether variants in genes that metabolize or transport vitamin D
or its receptors (gene polymorphism) may impair the beneficial effects of vitamin D on
cancer outcomes [322,401]. A specific form of VDBP, GC, has been suggested to improve
cancer survival among both men and women in the US [323]. Nevertheless, neither of these
conditions is modifiable.

Postmenopausal women who increased their vitamin D3 intake by 1100 IU reduced
their relative cancer risk by 60 to 77% [89], providing strong support for vitamin D sup-
plementation or safe sun exposure in adults. Additionally, declining 25(OH)D levels due
to cirrhosis accelerate liver cancer progression and mortality [352]. Epidemiologic studies
indicate that 25(OH)D levels below 20 ng/mL are associated with a 30 to 50% increased
risk of these cancers and related deaths [172,350,351].

5.3. Adverse Effects of Vitamin

Vitamin D-related toxicity is rare in both children and adults, typically occurring after
ingestion of doses exceeding 30,000 IU daily in non-obese persons for an extended period
or acutely taking millions of units ingested by mistake [402-404]. Most adverse effects in
adults result from substance misuse or accidental ingestion. The skin, liver, and kidneys
have metabolic pathways to prevent excessive vitamin D production and activation of
active metabolites—25(OH)D and 1,25(OH);D, respectively. When overproduction occurs,
catabolic pathways (mainly 24-hydroxylase) are activated, leading to the formation of
inactive vitamin D metabolites [405]. Excessive sun exposure can increase the risk of skin
damage [77], but it does not cause vitamin D toxicity [28,102].

Elevated 25(0OH)D levels without hypercalcemia should prompt the discontinuation
of vitamin D and investigation of the underlying cause. Unlike hypercalcemia, elevated
25(OH)D levels are not a medical emergency and, by themselves, are not considered
vitamin D toxicity [49,54]. If excessive intake is suspected, vitamin D supplements, in-
cluding multivitamins and vitamin A, should be paused temporarily. Once levels nor-
malize, a lower dosage can be reintroduced. Most cases of vitamin D toxicity occur with
serum concentrations exceeding 150 ng/mL, accompanied by hypercalcemia and hyper-
calciuria. Long-term supplementation of 10,000 IU/day or 50,000 weekly is considered
safe [406]. Rarely, macrophage-driven autonomous production of 1,25(0OH),;D can occur in
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granulomatous diseases, such as sarcoidosis and tuberculosis, leading to hypercalcemic
syndrome [407,408].

6. Discussion

Vitamin D deficiency is common not only in individuals living at northern and south-
ern latitudes but also in peri-equatorial regions. While UVB exposure stimulates vitamin
D production in the skin, evidence suggests that sunlight offers broader health benefits
beyond supplementation, with added advantages from natural dermal synthesis of vitamin
D. Several reviews of epidemiological literature examine the relevant mechanisms and offer
valuable insights [409,410]. Around one-third of clinical studies have focused on vitamin
D’s role in disease prevention, while about one-fourth have reported inconsistent results
or failed to show its benefits. Low serum 25(OH)D levels strongly correlate with higher
cancer incidence and increased mortality [89,352,399,400], as well as worsening of other
chronic diseases [20,34,35].

Despite gaps in evidence from well-designed RCTs, overall data consistently support
the protective effects of vitamin D—especially when serum 25(OH)D concentrations exceed
40 ng/mL—including for the prevention of cancer and reduction of mortality [73]. This
study highlights the need for well-designed, higher-quality clinical studies using proper,
reproducible methodologies. The latter includes adequate statistical power, sufficient dose,
and duration to evaluate hypotheses on vitamin D’s health effects. Notably, many studies
fail to assess dose-response relationships between sunlight exposure, vitamin D intake, and
serum 25(OH)D levels [1], with negative or inconclusive outcomes often stemming from
such flawed designs. Ecological prospective studies and well-designed RCTs consistently
support the pleiotropic benefits of vitamin D, including reduced cancer risk [100,101],
attributed to its broad genomic and non-genomic effects [12].

The impact of vitamin D repletion on cancer incidence, mortality, and clinical outcomes
is no longer hypothetical; the strongest available evidence supports its role in reducing
cancer-related mortality. As illustrated in this systematic review, many recent clinical
studies have addressed this issue and, having met scientific standards, strongly support
the beneficial role of vitamin D in cancer, while others influenced by commercial interests
fail to do so. This is unsurprising, as most negative studies have had inherently poor study
designs. This review examined the role of vitamin D in cell growth and cancer, as well as
its potential to reduce cancer risks and mortality. While vitamin D plays a significant role
in cancer prevention and reducing mortality, it is one of many essential micro-nutrients
vital for optimal health and survival.

Compared with mortality, cancer risk reduction has received less robust investigation
in vitamin D intervention studies, partly because no clinical trials have been conducted
yet using optimized micronutrient protocols. Notably, health extends beyond the absence
of disease to include well-being, happiness, and productivity, and contributions to society
(being productive), which require a health span and healthy life expectancy [411]. As the
global population grows, more people are living longer, highlighting the need to prioritize
the reduction of chronic diseases and improve the health span, especially cardiovascular
diseases and cancer, as discussed in this SR. These are vital for promoting healthy aging
and improving health span.

Recent data from epidemiological, cross-sectional, and longitudinal studies, with few
exceptions [45], support the idea that maintaining serum 25(OH)D concentrations above
40 ng/mL, “ideally” between 50 and 80 ng/mL, reduces the incidence of many cancers,
cancer-related mortality [222,412,413], and all-cause mortality [188,414]. However, progress
in the vitamin D field is hindered by poorly designed RCTs, regardless of the study size or
cost (e.g., the VITAL study [45]).
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Adequately powered studies with appropriate duration that test specific vitamin
D-related hypotheses consistently report protective effects in individuals with vita-
min D deficiency—serum 25(OH)D levels less than 20 ng/mL—and maintained serum
25(OH)D concentrations above 40 ng/mL [415]. Future vitamin D studies must priori-
tize large, prospective community-based ecological designs that specifically target prede-
fined serum 25(OH)D concentrations, using vitamin D supplementation as the primary
intervention—not as an add-on in pharmaceutical trials—to accurately assess risk reduc-
tions. Without meeting these criteria, outcome data will remain unreliable.

7. Conclusions

Vitamin D exerts broad systemic beneficial effects beyond skeletal health, significantly
impacting immune regulation, gene expression, and disease prevention through autocrine,
paracrine, and epigenetic mechanisms. This study underscores the importance of maintain-
ing serum 25(0OH)D concentrations between 50 and 80 ng/mL—well above current official
recommendations—to realize these benefits fully. Non-obese individuals typically need
70-90 IU per kilogram of body weight daily to reach optimal levels. Obese individuals
require several times higher doses (see Section 2). Achieving this requires a vitamin D
dose about ten times higher than government recommendations of 400-600 IU/day for
adults [and 20-30 ng/mL serum 25(OH)D levels], which are grossly outdated. Despite this,
some recent clinical guidelines (e.g., American Endocrine Society, 2024) [416] still cite these
inappropriately low intakes, harming the population. Adverse effects are extremely rare to
occur below 150 ng/mL.

Maintaining optimal serum vitamin D levels above 40 ng/mL reduces cancer inci-
dence and mortality, along with multiple extra-skeletal benefits. Addressing widespread
deficiency through safe, regular sun exposure and personalized supplementation offers a
simple, cost-effective public health strategy. This approach lowers cancer and cardiovas-
cular risks, eases chronic disease burdens, saves billions on healthcare costs, and protects
lives. As shown in this review, therapeutic vitamin D status must be a core preventive
measure in clinical guidelines and in routine clinical practice—not just a treatment.
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