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Abstract

Objective: Evaluate the association between vitamin D (vitD) status and Corona Virus-19 (COVID-
19) infection in adults aged 50 years and older.
Design: Adults 250 undergoing COVID-19 testing from July 2020 to December 2021, without prior
vaccination, consented to blood analysis. SARS-CoV-2 PCR confirmed current COVID-19 infection.
VitD status was assessed via 25(0OH)D concentration (LCMS/MS, ZRT Labs, Portland, OR).
Sociodemographic data were collected at enrollment. Statistical analyses (SAS 9.4) examined
associations between sociodemographics, COVID-19, and vitD status. Multivariate logistic
regression analyzed factors linked to COVID-19 or vitD status.
Results: Of 131 participants, 46.6% were >65 years old, 71.0% married, 19.9% Black American,
36.6% male, 38.9% Medicaid/Medicare/self-pay, and 42.8% BMI>30. VitD status and Black
American (p=0.0001) significantly associated with COVID-19 infection (p=0.0001). Black American
(p=0.0003), males (p=0.003), and BMI (p=0.007) were inversely associated with 25(OH)D
concentration. In a multiple logistic regression model predicting COVID-19 infection, only vitamin
D status remained significant after controlling for certain sociodemographic and clinical factors
(p<0.0001, OR 0.92, 95% CI 0.89-0.95).

Of the 44 COVID-positive participants, 35 (79.6%) were hospitalized and 19 (43.2%) were
admitted to the Intensive Care Unit (ICU). Hospitalization due to COVID-19 was associated with
age >65 years old (p=0.02; OR 12.0, 95% Cl 1.34-106.79), male (p=0.02, OR 10.7, 95% CI 1.20-

94.73), and 25(0OH)D <40 ng/mL (p=0.0006, OR 42.5, 95% CI 3.90-461.01). In multivariate analysis,
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the association between vitamin D status and the risk of COVID-related hospitalization remained
significant and inversely associated (p=0.03, OR 0.88, 95% CI 0.78-0.99).

In unadjusted analysis, COVID pneumonia was associated with male sex (p=0.049; OR 4.6,
95% Cl 1.06-20.16 ) and 25(0OH)D <40 ng/mL (p=0.006, OR 18.8, 95% Cl 1.9-184.10). Participants
with COVID infection and 25(0OH)D <20 ng/mL were 2.1 times more likely to be admitted to
ICU/death (p=0.03). In unadjusted analysis, ICU admission and/or death were linked to age >65
years (p=0.0002, OR 16.9, 95% Cl 3.63-78.56), Medicaid/Medicare/self-pay insurance status
(p=0.004, OR 0.1, 0.04-0.56), and 25(OH)D <20 (p=0.03, OR 3.9, 1.09-13.66) and <40 ng/mL
(p=0.03); however, only age 265 remained significant in multivariate analysis (p=0.04, OR 6.7, CI
1.05-43.0).
Conclusions: Lower 25(0OH)D concentration was a significant predictor and/or contributor to
COVID-19 infection, suggesting the importance of maintaining adequate vitamin D status in
reducing infection risk and mitigating severe outcomes.

Word Count: 347
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Introduction

Vitamin D is a fat-soluble secosteroid hormone that is synthesized in the skin upon exposure to
sunlight and can also be obtained from certain foods or through supplements. Once ingested,
vitamin D is converted into 25-hydroxy-vitamin D (25(OH)D) in the liver and then into the active
form, 1,25-dihydroxy-vitamin D (1,25(OH);D), in the proximal tubules of the kidney and other
cells in the body. All forms of vitamin D in circulation are associated with the vitamin D binding
protein (DBP) or albumin, with varying affinities.>®> While the active form of vitamin D plays a
critical role in maintaining calcium homeostasis and bone health by regulating the balance of
calcium and phosphorus in the body, vitamin D and its metabolites also influence cell growth and
differentiation and affect the function of both the innate and adaptive immune systems.*
Circulating concentrations of vitamin D as an essential nutrient and preprohormone have also
been associated with several health conditions, including cardiovascular disease, preeclampsia,
gestational diabetes, autoimmune diseases such as multiple sclerosis and systemic lupus, as well
as some cancers (breast, colon and prostate).>® The serum concentration of 25(0OH)D is widely
used as a marker of vitamin D status, and inadequate levels of vitamin D can lead to vitamin D
deficiency. Furthermore, vitamin D has been shown to play a role in racial/ethnic health

disparities.!*13

Historically, the Endocrine Society defined vitamin D sufficiency as a serum 25(OH)D
concentration of greater than 30 ng/mL.}* Hollis et al'®> and others!® have suggested optimal

vitamin D status occurs when circulating 25(0OH)D concentration is at least 40 ng/mL. Studies
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have shown that higher concentrations of vitamin D are associated with enhanced immune
response and reduced severity of viral respiratory infections, including influenza.’-22 While most
of the studies on this topic have focused on influenza, the same immune response mechanisms
are likely to apply to coronaviruses, given the similarities between these diseases in the lower
respiratory tract. Vitamin D supplementation has also been shown to be more effective than
standard flu vaccines in preventing respiratory infections, especially in those who were deficient
prior to supplementation.?%?4 The link between vitamin D deficiency and susceptibility to certain
viruses, including swine flu, has been recognized as far back as 1949 in animal studies.?>2®
Critically ill individuals upon admission to the intensive care unit (ICU) have a higher prevalence
of vitamin D deficiency, partly attributable to pre-existing malnutrition associated with disease
states and lack of sunlight exposure. Conditions such as sepsis, acute respiratory distress
syndrome, and acute kidney injury have all been associated with vitamin D deficiency, leading to

increased morbidity, mortality, and extended ICU stays.?®

Vitamin D deficiency exhibits a higher prevalence in certain demographic groups characterized by
factors such as darker skin pigmentation, as observed in Black Americans and Hispanic
individuals,?”?® as well as in older adults who encounter limited sun exposure, potentially due to
reduced dermal substrate for vitamin D synthesis.?° This deficiency has been correlated with
elevated rates of morbidity and mortality in affected populations.3® Moreover, individuals
belonging to these groups have displayed more severe clinical outcomes following infection with
SARS-CoV-23132 (severe acute respiratory syndrome coronavirus 2; a strain of coronavirus that

causes COVID-19, the respiratory illness responsible for the COVID-19 pandemic and the


https://en.wikipedia.org/wiki/Coronavirus
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development of COVID-19), providing additional compelling evidence regarding the pivotal role

of vitamin D in shaping immune responses and bolstering resistance to infections.

Given the documented prevalence of vitamin D deficiency among high-risk populations and the
well-established role of vitamin D in modulating immune function, encompassing both innate
and adaptive immunity,33 this study sought to investigate the relationship between vitamin D
status and Corona Virus-19 (COVID-19) infection. Acknowledging the multifaceted nature of
COVID-19 infection, which encompasses factors such as prior exposure to coronavirus variants,
duration of viral exposure, and individual health conditions—particularly the heightened
susceptibility associated with chronic illnesses like diabetes and cardiovascular disease, all of
which intricately intersect with immune function and vitamin D status—our study was designed

to control for these confounding variables.

The primary hypothesis posited that participants at the time of SARS-CoV-2 testing presenting
with vitamin D deficiency (25(0OH)D <20 ng/mL) or insufficiency (25(OH)D 220<40 ng/mL) would
exhibit an elevated likelihood of COVID-19 diagnosis compared to individuals with vitamin D
sufficiency (25(0OH)D 240 ng/mL). This hypothesis was formulated irrespective of demographic
variables such as race, sex, age, and body mass index (BMlI). In addition to the primary hypothesis,
a secondary hypothesis was examined, postulating that individuals who had COVID-19 infection
would be more likely to experience more severe illness, as defined by hospitalization,

pneumonia, ICU admission, and/or death, particularly in the presence of vitamin D deficiency.
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Our study focused on a cohort of adults aged 50 years and older, recognizing their increased
vulnerability to COVID-19, and encompassed individuals who had recently undergone PCR
(polymerase chain reaction) testing for COVID-19. Additionally, participants consented to the
analysis of their vitamin D status through blood sample evaluation. Enrollment of participants
occurred prior to the availability and/or administration of any COVID-19 vaccine. To gauge
infection severity, we utilized objective criteria, including the diagnosis of radiographic
pneumonia, hospitalization rates, ICU admission, and mortality rates. The primary objective of
this study was to discern the nuanced relationship between COVID-19 status at the time of testing
and the severity of infection, while meticulously considering baseline vitamin D status and

thoughtfully controlling for other relevant risk factors.

Methods:

Study Design: This study included adults who were 50 years of age or older and had undergone
testing for COVID-19. At the time of their enroliment, no participants had received immunization
with any COVID-19 vaccines. Participants provided written informed consent (Pro00099939), and
the study was registered with ClinicalTrials.gov (ldentifier: NCT04482673). Ninety-five
participants (87 with negative COVID-19 status at study entrance and 8 with COVID-19 infection
at the time of enrollment) voluntarily took part in a randomization process where they were
provided either vitamin D supplementation (6000 IU/day) or vs placebo (0 IU/day). The analysis
was performed looking at health outcomes based on circulating vitamin D status at the time of
study entrance. Treatment had not been enacted at the time of study entry and had not been in

place when analyzing vitamin D status (baseline) and hospitalization or pneumonia diagnosis at
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the time of presentation. ICU admission was during the participant’s admission due to acute
COVID infection and was within one month of diagnosis.

Study Setting: All participants were recruited from the Medical University of South Carolina, an
urban university hospital in Charleston, SC, USA.

Study Participants: The entry criteria for this study were age of 50 years or greater and a recent

COVID-19 test using the methodology described below within 7 days of enrollment into the study
with or without notable disease symptoms. The only inclusion criteria were that the participant
had to be fluent in English, could not have had a known prior COVID-19 infection, and had the
ability to give written informed consent.

Study Data Collection: A standardized questionnaire was utilized to gather information on the

sociodemographic and clinical characteristics of the study cohort. This included details such as
age, gender, marital status, ethnicity, educational background, history of chronic illnesses,
current medications, and vitamin intake.

Polymerase Chain Reaction (PCR) Testing for current SARS-CoV-2 (COVID-19) Infection: Each

participant had a nasal swab inserted directly into one of the two nares swirled for 10 seconds
per Center for Disease Control guidelines.3* The nasal swab was immediately placed in buffer,
placed in a plastic bag, then sent to MUSC Clinical Chemistry where the sample was tested for
the presence or absence of SARS-CoV-2 RNA by PCR, a nucleic acid amplification test. Results
were reported in the electronic medical record at MUSC (EPIC) within 48 hours of sample
collection.

Vitamin D Status Defined: We defined vitamin D status by combining criteria from the Endocrine

14

Society at the time of study design,'* our previous research,’® and findings from others.'®
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Circulating 25(0OH)D concentration, expressed in ng/mL, was categorized as follows: a) deficiency:
<20 ng/mL; b) insufficiency: 220 and <40 ng/mL; and c) sufficiency: 240 ng/mL.

Measuring Vitamin D Status through Total Circulating 25(0OH)D Concentration: The 25(0OH)D

concentration was determined using a LCMS/MS method from ZRT Laboratories in Portland, OR.
The methodology used was standardized, and the results were cross validated with the Hollis
radioimmunoassay method, which was in use at our laboratory (Diasorin, Stillwater, MN).
Samples were analyzed by participant identification number and laboratory personnel were

blinded to SARS-CoV-2 (COVID-19 infection) status.

Statistical Analysis:

Primary Analysis - Predicting COVID-19 Infection: The primary objective of this study was

to assess the relationship between COVID-19 infection and total circulating 25(OH)D
concentration. Initially, univariate and bivariate analyses were performed to identify factors
associated with COVID-19 status (positive or negative). Sociodemographic and clinical
characteristics were assessed for their potential associations with COVID-19 status and baseline
25(OH)D concentration using Chi-square and Student's t-test, respectively.

A logistic regression model was then constructed to predict COVID-19 infection status at
the time of testing. This model incorporated variables that were independently associated with
COVID-19 status from the univariate and bivariate analyses. The logistic regression aimed to
identify predictors of COVID-19 infection, allowing us to understand the factors associated with

testing positive for the virus.

10
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Secondary Analysis - Predicting COVID-19 Infection Severity: In a separate analysis

focusing exclusively on participants who tested positive for COVID-19, we aimed to predict the
severity of COVID-19 illness. Initially, univariate and bivariate analyses were conducted to identify
factors associated with infection severity, which was defined by outcomes such as radiographic
pneumonia, hospitalization, ICU admission, and mortality.

A second logistic regression model was constructed to predict COVID-19 infection severity
among those who tested positive. This model included variables found to be associated with
infection severity in the initial analyses. The objective of this secondary analysis was to
understand the determinants of illness severity within the COVID-19 positive group.

These two logistic regression models are distinct and address separate research
guestions. The first model focuses on the likelihood of testing positive for COVID-19 infection,
while the second model explores the factors contributing to the severity of COVID-19 illness
among those who contracted the viral infection. Both analyses provide valuable insights into the
dynamics of COVID-19 infection and its impact on study participants. Statistical analyses were
completed with SAS 9.4 and SPSS 28 and examined associations between sociodemographics,
COVID-19, and vitamin D status. Multivariate logistic regression analyzed factors linked to COVID-

19 or vitamin D status.

Results

Each participant underwent a SARS-CoV-2 PCR test within 7 days prior to enroliment to confirm

study inclusion of being either COVID-negative (COVID-Neg) with no prior known history of COVID

11
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infection or COVID-positive (COVID-Pos) with a current COVID infection at the time of study
enrollment. Initially, the cohort was comprised of 134 participants; however, after a meticulous
review of medical records following consent, it was found that three individuals allocated to the
COVID-negative group had a history of remote COVID infection confirmed by prior PCR testing.
Consequently, these three participants were excluded from the analysis, resulting in a final
sample size of 131 participants, with 87 individuals in the COVID-negative group and 44 in the
SARS-CoV-2 positive (COVID-Pos) group at the time of enrollment. Analysis of demographic
characteristics (see Table 1) revealed no statistically significant difference in mean age, age group
distribution (65 vs. > 65 years), sex distribution, marital status, insurance status, or BMI between
the two groups. Black American participants exhibited a 2.5-fold higher likelihood of being
COVID-Pos compared to Non-Black Americans (p<0.0001). In terms of vitamin D status, as
measured by total circulating 25(OH)D concentration, a significant disparity was observed
between the COVID-Pos and COVID-Neg groups: COVID-pos participants displayed a statistically
lower mean level (24.6 + 16.4 ng/mL) compared to those participants in the COVID-neg group

(47.7 £ 17.8 ng/mL; p<0.0001).

Factors that influence vitamin D status historically were analyzed for this cohort and are listed in
Table 2. Being male was associated with lower mean 25(OH)D concentration than females (32.5
v 44.2 ng/mL; p=0.0006). Black Americans had significantly lower mean 25(0OH)D compared to
Non-Black Americans (26.4 v 43.3 ng/mL; p=0.0001). BMI was significantly associated with
vitamin D status (>30: 34.2 v <30: 44.2 ng/mL; p=0.004). Age > 65 years, marital status and

insurance status were not significantly associated with vitamin D status.

12
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Table 3 presents bivariate analyses comparing sociodemographic and clinical characteristics
between participants who tested positive for COVID and those who tested negative. The main
differences between the groups were race/ethnicity and baseline 25(0OH)D concentration and
threshold levels: COVID-pos participants were more likely Black American (p<0.0001) and had
significantly lower 25(0OH)D concentrations (p<0.0001). Black American were 2.5 times more
likely than non-Black Americans to be COVID-pos at presentation. Those who were vitamin D
deficient with 25(OH)D concentration of <20 ng/mL (deficiency) were 4.2 times as likely to be
COVID-pos than those with a level of >20 ng/mL. Those with a 25(0H)D concentration of <40
ng/mL (deficiency or insufficiency) were 5.2 times more likely to be COVID-pos than those with a

level of >40 ng/mL.

Factors significant in bivariate analyses or previously associated with either COVID infection or
vitamin D status were included in a multivariate logistic regression model in identifying
independent predictors of COVID infection (age > 65 years, sex, race/ethnicity, marital status,
insurance status, BMI > 30, and baseline 25(0OH)D concentration). The only factor that remained
statistically significant in the model was 25(OH)D concentration (p <0.0001, 95% Cl 0.90.95; OR
0.92) (Table 4a), which was inversely related to COVID positive status: those with lower 25(0H)D
were more likely to be COVID positive. When the model was changed to include 25(0OH)D at the
threshold of <20 ng/mL (Table 4b), with the other factors remaining the same, those with
25(0OH)D <20 ng/mL were 24.9 times more likely to be COVID pos than those with 25(0OH)D >20

ng/mL (p<0.0001, 95% Cl 6.14-100.82). When vitamin D status was dichotomized, there was a

13
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trend where being Black American also was an independent predictor of COVID-pos status

(p=0.05, OR 3.37, 95% CI 1.009-11.26).

A summary of illness severity of those who were COVID-pos in this cohort is found in Table 5a-
5e. Of the 44 COVID-pos participants, 35 (79.6%) were hospitalized and 19 (43.2%) were admitted
to the Intensive Care Unit (ICU). Thirty-one (70.5%) were diagnosed with pneumonia confirmed
by chest radiograph at the time of diagnosis. Of the 19 admitted to the ICU, 11 (57.9%) died due

to acute COVID infection and its complications.

As shown in Table 5a, those who required hospitalization due to their acute COVID infection
compared to those who were not differed significantly by age (those hospitalized were more
likely older, p=0.02), sex (males were more likely than females to be hospitalized, p=0.02), and
by 25(0OH)D concentration at presentation <40 ng/mL (p=0.0006). Those with 25(0OH)D <40 ng/mL
were 5.4 times more likely to be hospitalized than those with a level >40 ng/mL. In a multivariate
logistic regression analysis performed to assess factors associated with hospitalization, including
age >65, sex, race/ethnicity, marital status, insurance, BMI, and 25(OH)D concentration, only
25(OH)D concentration remained a significant independent predictor of hospitalization

(estimate: -0.14, p-value=0.008, odds ratio: 0.9, 95% Cl: 0.78-0.99).

Those participants who were diagnosed with COVID pneumonia confirmed by radiograph (Table
5b) did not differ from those without pneumonia on the basis of age, marital status, insurance

status, BMI, race/ethnicity, or 25(0OH)D <20 ng/mL but did differ on the basis of sex (males were

14
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1.5 times more likely than females to have radiographic-confirmed pneumonia at presentation
than females, p=0.049) and 25(OH)D concentration <40 ng/mL (p=0.006). Those with a 25(0OH)D
concentration <40 ng/mL were 4.7 times as likely to be diagnosed with COVID pneumonia
(p=0.006) than those with a level of >40 ng/mL. In the bivariate logistic regression, 25(0OH)D
concentration was significantly associated with COVID pneumonia; however, in the multivariate
logistic regression analysis, after controlling for other independent factors, 25(OH)D
concentration was no longer significant (estimate: -0.08, p-value=0.05, odds ratio: 0.9, 95%

confidence interval: 0.86-1.002).

Intensive Care (ICU) admission (Table 5c¢) was associated with age (those who were 65 years or
older were 5.3 times more likely to be admitted to the ICU (p=0.0002), have
Medicaid/Medicare/self-pay (p=0.004), and vitamin D deficiency and/or insufficiency (p=0.03). In
a multivariate logistic regression analysis for ICU admission, there were no independent factors
identified that were associated with ICU admission. Death attributed to COVID infection in this
cohort (see Table 5d) was associated with age >65 years and insurance status but were no longer
significant in the multivariate regression model. While no deaths were observed among the 6
participants with a 25(0OH)D level 240 ng/mL at presentation, this association did not reach
statistical significance. ICU admission and/or death attributed to COVID infection (see Table 5e)
were associated with age (those >65 years were 5.3 times more likely to have an ICU admission
and/or death), Medicaid/Medicare/self-pay insurance status, and 25(OH)D levels categorized at
cutpoints of 20 and 40 ng/mL. In multivariate logistic regression, however, none of these factors

exhibited a statistically significant association with ICU admission and/or death due to COVID.
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Discussion

This pilot study aimed to explore the potential correlation between vitamin D status and COVID-
19 infection among adults aged 50 years and older, while considering various factors that might
impact both vitamin D status and the likelihood of contracting COVID-19. Building on previous
research by Hollis et al. regarding optimal vitamin D status,*> our main hypothesis proposed that
older adults with vitamin D deficiency (25(0OH)D <20 ng/mL) or insufficiency (25(0OH)D >20 to <40
ng/mL) would have a higher risk of being diagnosed with COVID-19 compared to those with
sufficient vitamin D levels, defined as 25(0OH)D concentrations >40 ng/mL. Additionally, we
hypothesized that individuals with both COVID-19 infection and vitamin D deficiency would

experience more severe illness.

Within this cohort of adults aged 50 years and older, the analysis revealed various factors that
independently were associated with positive COVID-19 status at the time of testing. These factors
included sex, insurance status, race/ethnicity, and vitamin D status. Specifically, males,
individuals with Medicaid/Medicare or self-pay without insurance, those of Black-American
ethnicity, and those with lower circulating 25(0H)D concentrations exhibited a heightened
likelihood of testing positive for COVID-19. Additionally, among those who tested positive for
COVID-19, a relationship emerged between lower 25(0OH)D concentrations and the occurrence

of hospitalization and pneumonia.
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To ascertain the independent influence of vitamin D status on testing positive for COVID-19
infection, a bivariate logistic regression model was employed. The results indicated that vitamin
D status remained the sole factor that exhibited a statistically significant association with COVID-
19 infection. Similarly, in the multivariate logistic regression model showed that vitamin D status
was inversely related to testing positive for COVID-19 infection at the time of presentation, with
lower 25(0OH)D concentration more likely associated with COVID-19 infection. When vitamin D
status was dichotomized in the multivariate logistic regression, 25(0OH)D <20 ng/mL as well as

being Black American were independently associated with COVID-pos status.

Further examination of COVID-positive individuals revealed a significant association between
vitamin D deficiency, defined by 25(0OH)D concentrations below 20 ng/mL, and insufficiency,
defined by 25(0OH)D concentrations below 40 ng/mL, and increased rates of hospitalization,
pneumonia, ICU admission, and/or death. Specifically, in bivariate logistic regression, individuals
who were deficient or insufficient in vitamin D were 4.7 times more likely to have radiographic
evidence of pneumonia and 5.4 times more likely to require hospitalization. However, in this
small subgroup, the significance was attenuated when other factors were included in a
multivariate logistic regression. Despite this attenuation, these findings highlight the significant
impact of vitamin D deficiency on the morbidity associated with COVID infection within this

specific cohort.

Emerging evidence suggests that low vitamin D levels could potentially exacerbate COVID-19

infection, particularly when the viral infection reaches the lower respiratory tract. The virus
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targets alveolar type Il epithelial cells (ATIl), which are pivotal in producing pulmonary surfactant
and facilitating lung repair. These cells are susceptible to infection due to their high expression
of the angiotensin-converting enzyme 2 (ACE2) receptor, the primary cellular attachment point
for SARS-CoV-2. 3>37 Previous research has indicated that innate and adaptive immune cells in
the lungs, as well as ATII cells themselves, have the capability to synthesize the active form of
vitamin D and are strongly regulated by this hormone.3®3° Disruption of ATII cell functions
resulting from SARS-CoV-2 infection could lead to pulmonary surfactant deficiency, dysregulation
of the local renin-angiotensin system, impaired lung fluid clearance and repair mechanisms.
These processes, coupled with the subsequent inflammatory cytokine storm, contribute to the
development of acute respiratory distress syndrome, which is a defining feature of severe COVID-
19 infection and pneumonia. Notably, these adverse outcomes disproportionately affect racial
and ethnic minorities in the United States. Adequate vitamin D levels may enhance the
pulmonary immune response against the virus, mitigate the harmful cytokine storm, and alleviate

surfactant dysregulation, potentially preventing or ameliorating the acute syndrome.

Furthermore, a recent meta-analysis conducted by Meng et al.*° involving 8,128 participants
across 8 clinical trials revealed valuable insights. While the meta-analysis did not find a significant
reduction in the rate of SARS-CoV-2 infection with vitamin D supplementation, it did indicate
improved clinical outcomes, including a reduced need for ICU admissions (RR 0.63; 95% Cl 0.44
to 0.89) and decreased reliance on mechanical ventilation (RR 0.58; 95% CI 0.39 to 0.84), albeit
without a statistically significant effect on mortality. Subgroup analyses within this meta-analysis,

focused on patients with specific conditions, did, however, reveal a significant reduction in
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mortality among individuals with preexisting vitamin D deficiency (RR 0.76; 95% Cl 0.58 to 0.98).
These findings suggest that vitamin D may play a role in mitigating illness severity, particularly in
cases where vitamin D deficiency is known or exists. Notably, our findings align with the
observation that vitamin D deficiency was more prevalent among individuals who tested positive

for SARS-CoV-2 infection.

This pilot study exhibits several strengths that enhance its value. Firstly, it is notable for its diverse
participant demographics, encompassing individuals from various racial and ethnic backgrounds.
Additionally, the study includes participants with a wide range of health statuses and varying
body mass indices (BMI), adding to the robustness and generalizability of the findings. Moreover,
the analysis is enriched by the inclusion of detailed socioeconomic and clinical characteristics,

which allows for a comprehensive exploration of potential associations.

This study has some limitations that should be acknowledged. Firstly, the reliance solely on PCR
testing for COVID-19 diagnosis, without subsequent antibody confirmation, represents a
potential limitation. While PCR testing is highly sensitive for detecting active infections, there is
a possibility that participants with previous COVID infections may have been included, leading to
a potential underestimation of COVID-19 cases. However, it is important to note that the study
meticulously collected data on signs and symptoms of infection from both COVID-negative and
COVID-positive participants, which helped mitigate some of the potential limitations associated
with PCR-based diagnosis. Additionally, all participants received care through the same medical

center system, utilizing a centralized electronic medical record (EMR). Each participant's EMR
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was thoroughly screened for prior SARS-CoV-2 testing to minimize the inclusion of individuals

with previous COVID infections.

Another limitation of this study is the relatively small sample size of participants, which was
influenced by the challenges of recruiting unvaccinated individuals once COVID-19 vaccines
became widely available. Additionally, only six COVID-positive patients had serum 25(OH)D
concentrations 240 ng/mL. Given this very small number, severity endpoints related to this
threshold should be interpreted with caution. While the 240 ng/mL threshold may represent a
better benchmark for defining vitamin D adequacy compared to the 20 ng/mL threshold, the
sample size was insufficient to perform robust comparisons of outcomes between 25(OH)D levels
of 20—40 ng/mL and those >40 ng/mL. Consequently, caution is warranted in interpreting the
findings related to severe outcomes when comparing 25(0OH)D levels <40 ng/mL with those >40

ng/mL, due to the small number of participants in the latter group.

Furthermore, the small sample size of participants receiving vitamin D supplementation is
another limitation in assessing its potential effect on ICU admission and/or death. Of the 44
participants randomized to the longitudinal treatment arm of the study, only eight were
supplemented with vitamin D, 4 in the treatment group and 4 in the placebo group, with one
hospitalized at study entry with COVID-19 pneumonia. It remains unclear, then, whether vitamin
D supplementation mitigated disease severity, as the study lacked sufficient statistical power to

draw definitive conclusions. Despite these limitations, the findings underscore the potential
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importance of maintaining adequate vitamin D status during a viral epidemic, particularly in the

early stages of a novel virus outbreak when vaccines are not yet available.

In summary, in this small cohort, vitamin D status was associated with COVID-19 infection after
controlling for other independent factors. In addition, those hospitalized due to COVID infection
were more likely to be vitamin D insufficient or deficient. This exploratory study highlights the
importance of vitamin D status in relation to COVID-19 risk, with lower 25(0OH)D concentration
found to be a significant predictor of COVID-19 infection and severity of illness. These findings
have implications for mitigating the risk of acute viral infections such as COVID-19 and suggest
that maintaining adequate vitamin D levels may be important in reducing the risk of COVID-19
infection in older adults. Further research is needed to assess the impact of achieving optimal

vitamin D status of at least 40 ng/mL on the longitudinal risk of COVID infection in older adults.
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Table 1. Sociodemographics and Clinical Characteristics of Cohort by COVID-19 Status at Baseline®

Characteristic All COVID-19 COVID-19 p-value
Positive Negative

N=131 N=44 (33.6%) N=87 (66.4%) *p<0.05
Age in Years, Mean £ SD 64.3+9.3 65.9+11.3 63.5+7.9 0.2
(range) (50.6-96.0) (52.0-96.0) (50.6-80.0)
Ages 0.6
> 65 years, N (%) 61 (46.6%) 22 (36.1%) 39 (63.9%)
< 65 years, N (%) 70 (53.4%) 22 (31.4%) 48 (68.6%)
Sex 0.06
Males, N (%) 48 (36.6%) 21 (43.8%) 27 (56.3%)
Females, N (%) 83 (63.4%) 23 (27.7%) 60 (72.3%)
Marital Status 0.9
Married, N (%) 93 (71.0%) 31 (33.3%) 62 (66.7%)
Not Married, N (%) 38 (29.0%) 13 (34.2%) 25 (65.8%)
Insurance Status 0.9
Private, N (%) 80 (60.9%) 27 (33.8%) 53 (66.3%)
Medicaid/Medicare/Self-Pay, N (%) 51 (38.9%) 17 (33.3%) 34 (66.7%)
Body Mass Index (BMI) 0.05
> 30, N (%) 56 (42.8%) 24 (42.9%) 32 (57.1%)
BMI <30, N (%) 75 (57.3%) 20 (26.7%) 55 (73.3%)
Race/Ethnicity <0.0001*
Black, N (%) 26 (19.9%) 17 (65.4%) 9 (34.6%)
Non-Black, N (%) 105 (80.2%) 27 (25.7%) 78 (74.3%)
Baseline 25(OH)D, ng/mL 39.9+20.5 246+16.4 47.7+17.8 <0.0001*
(range) (4.0-105.0) (4.0-89.0) (9.0-105.0)

& Within the ALL column, percentages are the % of the total within that column. For the COVID-19 Positive and
Negative Columns, percentages are read across the columns comparing COVID-19 Positive and Negative
Participants for each attribute or characteristic.



Table 2. Sociodemographic and Clinical Characteristics of Cohort in Relation to Vitamin D
Status as Measured by Total Circulating 25(0OH)D Concentration (ng/mL)

BMI <30 (N=75)

(8.9-105.0)

Sociodemographic and Clinical 25(0OH)D (ng/mL), Mean + SD p-value
Characteristic (range) *p<0.05
Age 0.1
>65 years (N=61) 36.9+18.8
(4.0-82.0)
- 42.6 £21.6
<65 years (N=70) (8.0-105.0)
Sex 0.002*
Males (N=48) 32.6£15.8
(4.0-64.0)
Females (N=83) 44.2+21.7
(8.9-105.0)
Race/Ethnicity 0.0001*
Black American (N=26) 26.4£19.0
(4.0-70.0)
Non-Black American (N=108) 43.3113.5
(10.9-105.0)
Marital Status 0.4
Married (N=93) 40.4+20.3
(8.9-105.0)
Non-Married (N=38) 38.2+13.9
(4.0-89.0)
Insurance Status) 0.32
Private Insurance (N=80) 41.0+20.9
(4.0-105.0)
Medicaid/Medicare/Self Paying (N=52 3(;?)222%)7
Body Mass Index 0.004*
BMI >30 (n=56) 34.2+16.8
(4.0-70.0)
44.2+22.0




Table 3. COVID-1Y Positive vs. COVID-1Y Negative Participants by Sociodemographic and Clinical
Characteristics with Odds Ratios and Relative Risk

Characteristic All COVID-19 COVID-19 p-value (*p<0.05)
N=131 Positive Negative Odds Ratio (95% ClI)?
N=44 (33.6%) N=87 (66.4%) or
Relative Risk (95% Cl)
Age in Years, Mean = SD 64.3+9.3 65.9+11.3 63.5+79 0.2
(range) (50.6-96.0) (52.0-96.0) (50.6-80.0) OR (95% Cl)

1.0 (0.99-1.07)

Ages
> 65 years, N (%)
< 65 years, N (%)

61 (46.6%)
70 (53.4%)

22 (36.1%)
22 (31.4%)

39 (63.9%)
48 (68.6%)

0.6
RR (95% Cl)
1.1 (0.70-1.86)

Sex
Males, N (%)
Females, N (%)

48 (36.6%)
83 (63.4%)

21 (43.8%)
23 (27.7%)

27 (56.3%)
60 (72.3%)

0.06
RR (95% Cl)
1.6 (0.98-2.53)

Marital Status
Married, N (%)

93 (71.0%)

31(33.3%)

62 (66.7%)

0.9
RR (95% Cl)

Medicaid/Medicare/Self-
Pay, N (%)

51 (38.9%)

17 (33.3%)

34 (66.7%)

Not Married, N (%) 38 (29.0%) 13 (34.2%) 25 (65.8%) 0.9 (0.58-1.95)
Insurance Status 0.9
Private, N (%) 80 (60.9%) 27 (33.8%) 53 (66.3%) RR (95% Cl)

1.0 (0.62-1.66)

Body Mass Index (BMI)
> 30, N (%)
<30, N (%)

56 (42.8%)
75 (57.3%)

24 (42.9%)
20 (26.7%)

32 (57.1%)
55 (73.3%)

0.05
RR (95% Cl)
1.6 (0.99-2.60)

Race/Ethnicity

<0.0001*

>20, N (%)

106
(80.9%)

22 (20.8%)

84 (79.3%)

Black, N (%) 26 (19.9%) | 17 (65.4%) 9 (34.6%) RR (95% Cl)
Non-Black, N (%) 105 27 (25.7%) 78 (74.3%) 2.5 (1.66-3.90)
(80.2%)

Baseline 25(0OH)D, ng/mL <0.0001*

(range) 39.9 + 246 +16.4 47.7 £17.8 OR (95% Cl)
20.5 (4.0-89.0) (9.0-105.0) 0.9 (0.88-0.94)

(4.0-105.0)

25(OH)D Concentration

(ng/mL) <0.0001*

<20, N (%) 25(19.1%) | 22 (88.0%) 3 (12.0%) RR (95% Cl)

4.2 (2.84-6.32)

25(OH)D Concentration
(ng/mL)

<40, N (%)

>40, N (%)

72 (55.0%)
59 (45.0%)

38 (52.8%)
6 (10.2%)

34 (47.2%)
53 (89.8%)

<0.0001*
RR (95% Cl)
5.2 (2.36-11.43)

10R = Odds Ratio for continuous variables
RR = Relative Risk for categorical variables




Chi-square analysis was used for categorical variables to assess associations and calculate relative risk for
being Covid-Positive. Bivariate logistic regression was used for the continuous independent variable of
25(0OH)D concentration to assess association with Covid-Positive and to calculate odds ratios.



Table 4a. Logistic Regression Model in Predicting COVID-Positive Status with 25(OH)D Concentration

Independent Variable Estimate | Standard | Wald Chi | Odds Ratio 95% p-value
Error (SE) Square Estimates Confidence *p<0.05
(OR) Interval (CI)
Age = 65 years 0.35 0.60 0.34 1.42 0.44-4.57 0.56
Male 0.24 0.49 0.24 1.28 0.49-3.36 0.62
Black American 0.92 0.61 2.27 2.52 0.76-8.39 0.13
Unmarried -0.13 0.54 0.06 0.87 0.30-2.53 0.80
Medicaid/Medicare/Self-Pay -0.59 0.62 0.94 0.56 0.17-1.84 0.33
BMI > 30 0.35 0.50 0.50 1.42 0.54-3.75 0.48
25(OH)D Concentration -0.08 0.018 20.95 0.92 0.89-0.95 <0.0001*

SE = standard error

OR = odds ratio

95% Cl = 95% Wald Confidence Limits




Table 4b. Logistic Regression Model in Predicting COVID-Positive Status with 25(OH)D <20 ng/mL

Independent Variable Estimate | Standard | Wald Chi | Odds Ratio 95% p-value
Error (SE) Square Estimates Confidence *p<0.05
(OR) Interval (CI)
Age > 65 years 0.62 0.59 1.12 1.86 0.587-5.912 0.29
Male 0.61 0.50 1.49 1.84 0.691-4.886 0.22
Black American 1.22 0.62 3.90 3.37 1.009-11.261 0.05
Unmarried -0.11 0.56 0.04 0.89 0.30-2.69 0.84
Medicaid/Medicare/Self -1.20 0.64 3.57 0.30 0.09-1.05 0.06
BMI > 30 0.55 0.50 1.24 1.74 0.657-4.598 0.27
25(OH)D <20 ng/mL 3.21 0.71 20.26 24.87 6.137-100.821 <.0001*

SE = standard error

OR = odds ratio

95% Cl = 95% Wald Confidence Limits




Table 5a. COVID Positive — Hospitalization at 1ime of Study kEntry

Characteristic All Hospitalized Not p-value (*p<0.05)
N=44 Hospitalized Relative Risk (RR)
N=35 (79.6%) N=9 (20.5%) Odds Ratio (OR)
(95% Cl)
Ages 0.02* Fisher’s Exact
> 65 years, N (%) 22 (50.0%) 21 (95.5%) 1(4.6%) 1.5 (1.08-2.08) RR
< 65 years, N (%) 22 (50.0%) 14 (63.6%) 8 (36.4%) 12.0(1.34-106.79) OR
Gender 0.02* Fisher’s Exact
Males, N (%) 21 (47.7%) 20 (95.2%) 1(4.8%) 1.5 (1.07-2.00) RR
Females, N 23 (52.3%) 15 (65.2%) 8 (34.8%) 10.7 (1.20-94.73) OR
Marital Status 1.0 Fisher’s Exact
Married, N (%) 31 (70.5%) 25 (80.7%) 6 (19.4%) 1.0 (0.74-1.48) RR
Not Married, N (%) 13 (29.5%) 10 (76.9%) 3 (23.1%) 1.3 (0.26- 6.00) OR
Insurance Status 0.1 Fisher’s Exact
Private, N (%) 27 (61.4%) 19 (70.4%) 8 (29.6%) 0.7 (0.57-0.98) RR
Medicaid/Medicare/self-pay, N (%) | 17 (38.6%) 16 (94.1%) 1 (5.9%) 0.1 (0.02-1.32) OR
Body Mass Index (BMI) 1.0 Fisher’s Exact
BMI > 30, N (%) 24 (54.6%) 19 (79.2%) 5(20.8%) 0.9 (0.73-1.34) RR
BMI <30, N (%) 20 (45.4%) 16 (80.0%) 4 (20.0%) 0.9 (0.22-4.15) OR
Race/Ethnicity 1.0 Fisher’s Exact
Black, N (%) 17 (38.6%) 14 (82.4%) 3(17.6%) 1.1 (0.79-1.43) RR
Non-Black, N (%) 27 (61.4%) 21 (77.8%) 6(22.2%) 1.3(0.29-6.23) OR
25(0OH)D < 20 ng/mL 0.1 Fisher’s Exact
<20, N (%) 22 (50.0%) 20 (90.9%) 2 (9.1%) 1.3(0.97-1.83) RR
220, N (%) 22 (50.0%) 15 (68.2%) 7 (31.8%) 4.7 (0.80-25.75) OR
25(OH)D < 40 ng/mL 0.0006* Fisher’s
<40, N (%) 38 (86.4%) 34 (89.5%) 4 (10.5%) Exact
240, N (%) 6 (13.6%) 1(16.7%) 5 (83.3%) 5.4 (0.89-32.23) RR
42.5(3.90-461.01) OR
N N N p-value (*p<0.05)
Mean £STD | Mean + STD Mean £ STD Odds Ratio (OR) (95%
range range range Cl)
25(OH)D concentration 44 35 9 0.03* Student’s T-
(ng/mL) 246+16.4 | 20.2+95 41.7+25.5 test
4.0-89.0 4.0-41.4 10.9-89.0 0.008* regression
0.9 (0.86-0.98) OR
Multivariate Logistic Regression
Independent Variable Estimate | Standard | Wald Chi Odds Ratio 95% Confidence p-value
Error (SE) Square Estimates (OR) Interval (Cl) *p<0.05
Age > 65 years 0.96 1.71 0.31 2.61 0.09-74.74 0.58
Male 2.62 1.41 3.46 13.68 0.87-215.71 0.06
Black American -1.57 1.44 1.19 0.21 0.01-3.49 0.28
Unmarried -1.94 1.66 1.36 0.14 0.01-3.75 0.24
Medicaid/Medicare/Self 4.09 2.56 2.55 59.54 0.12-80.59 0.11
BMI =30 1.13 1.66 0.46 3.10 0.12-80.59 0.50
25(0OH)D Concentration -0.13 0.06 4.72 0.88 0.78-0.99 0.03*




In chi square analysis, tfactors independently associated with hospitalization at time of study entry included age
>65 years, male sex, and 25(0OH)D concentrations categorized at cutpoints of 20 and 40 ng/mL. Additionally,
based on Student’s t-test, 25(0OH)D concentration was found to be associated with hospitalization. In bivariate
logistic regression, a significant association was observed between hospitalization and 25(OH)D concentration
(p=0.008, 95% Cl 0.86-0.98). Subsequently, a multivariate logistic regression analysis was performed to assess
factors associated with hospitalization, including age >65, sex, race/ethnicity, marital status, insurance status,
BMI, and 25(OH)D concentration. The results demonstrated that only 25(0OH)D concentration remained a
significant independent predictor of hospitalization (estimate: 0.9, p-value=0.03, odds ratio: 0.9, 95% Cl: 0.78-
0.99).



Table 5b. COVID Positive — Pneumonia at time ot Study kntry

Characteristic All Pneumonia No p-value (*p<0.05)
N=44 Pneumonia Relative Risk (RR)
N=31 N=13 Odds Ratio (OR)
(70.5%) (29.6%) (95% C1)
Ages 0.2 Fisher’s Exact
> 65 years, N (%) 22 (50.0%) 18 (81.8%) 4 (18.2%) 1.4 (0.93-2.06) RR
< 65 years, N (%) 22 (50.0%) 13 (59.1%) 9 (40.9%) 3.1(0.79-12.3) OR
Gender 0.049* Fisher’s Exact
Males, N (%) 21 (47.7%) 18 (85.7%) 3 (14.3%) 1.5 (1.02-2.26) RR
Females, N 23 (52.3%) 13 (56.5%) | 10 (43.5%) | 4.6(1.06-20.16) OR

Marital Status

0.4 Student’s T-test

Married, N (%) 31 (70.4%) 23 (74.2%) 8 (25.8%) 1.2 (0.70-1.94) RR
Not Married, N (%) 13 (29.6%) 8 (61.5%) 5 (38.5%) 1.8 (0.40-7.12) OR
Insurance Status 0.7 Fisher’s Exact
Private, N (%) 27 (61.4%) 18 (66.7%) 9 (33.3%) 0.9 (0.60-1.27) RR
Medicaid/Medicare/self-pay, N (%) 17 (38.6%) 13 (76.5%) 4 (23.5%) 0.6 (0.16-2.44) OR
Body Mass Index (BMI) 0.9 Chi-Square

BMI > 30, N (%) 24 (54.6%) 17 (70.8%) 7 (29.2%) 1.0 (0.69-1.49) RR
BMI <30 20 (45.4%) 14 (70.0%) 6 (30.0%) 1.0 (0.28-3.82) OR
Race/Ethnicity 0.9 Chi-Square

Black, N (%) 17 (38.6%) 12 (70.6%) 5 (29.4%) 1.0 (0.68-1.49) RR
Non-Black, N (%) 27 (61.4%) 19 (70.4%) 8 (29.6%) 1.0 (0.27-3.82) OR

25(0H)D < 20 ng/mL
<20, N (%)

22 (50.0%)

17 (77.3%)

5(22.73%)

0.3 Chi-Square
1.2 (0.82-1.79) RR

>20, N (%) 22 (50.0%) 14 (63.6%) 8 (36.4%) 1.9 (0.52-7.29) OR
25(OH)D <40 ng/mL 0.006* Fisher’s Exact
<40, N (%) 38 (86.4%) 30 (78.9%) 8(21.1%) 4.7 (0.79-28.56) RR
>40, N (%) 6 (13.6%) 1(16.7%) 5 (83.3%) 18.8 (1.91-184.10)
OR
N N N p-value (*p<0.05)
Mean £STD | Mean £ STD | Mean £ STD Odds Ratio (OR)
range range range (95% Cl)
25(OH)D concentration 44 31 13 0.07 Student’s T-test
(ng/mL) 246+16.4 | 205+9.7 | 34.3+24.2 | 0.03* regression!
4.0-89.0 4.0-41.4 10.9-89.0 0.9 (0.90-0.99) OR
Multivariate Logistic Regression
Independent Variable Estimate | Standard | Wald Chi Odds Ratio 95% p-value
Error (SE) | Square Estimates Confidence *p<0.05
(OR) Interval (Cl)
Age > 65 years 0.29 1.04 0.08 1.33 0.17-10.24 0.78
Male 1.42 0.89 2.56 4.12 0.73-23.40 0.11
Black American -0.84 0.93 0.82 0.43 0.07-2.67 0.37
Unmarried -1.53 1.09 1.95 0.22 0.03-1.85 0.16
Medicaid/Medicare/Self 0.24 1.04 0.05 1.27 0.17-9.80 0.82
BMI > 30 1.19 1.04 1.30 3.27 0.43-25.02 0.25
25(OH)D Concentration -0.08 0.04 3.69 0.93 0.86-1.002 0.05




In chi-square analysis, male sex and 25(UH)D concentration below 4U ng/mL were identitied as independent
factors associated with COVID pneumonia. Furthermore, bivariate logistic regression revealed a significant
association between pneumonia and 25(OH)D concentration (p=0.03; 95% CI: 0.90-0.99). Upon conducting
multivariate logistic regression analysis adjusting for age >65, sex, race, marital status, insurance, BMI, and
25(OH)D concentration, the significance of 25(0OH)D concentration was attenuated (estimate: -0.08, p-
value=0.05, odds ratio: 0.9, 95% confidence interval: 0.86-1.002).



Table 5c. COVID Positive — Intensive Care Unit (ICU) Admission during Hospitalization

Characteristic All ICU No ICU p-value (*p<0.05)
N=44 N=19 N=25 Relative Risk (RR)
(43.2%) (56.8%) Odds Ratio (OR)
(95% C1)
Ages 0.0002* Fisher’s Exact
> 65 years, N (%) 22 (50.0%) | 16 (72.7%) 6 (27.3%) 5.3 (1.81-15.74) RR
< 65 years, N (%) 22 (50.0%) 3 (13.6%) 19 (86.4%) 16.9 (3.63-78.56) OR

Gender 0.07 Chi-Square
Males, N (%) 21 (47.7%) | 12 (57.1%) 9 (42.9%) 1.9 (0.91-3.86) RR
Females, N 23(52.3%) | 7 (30.4%) 16 (69.6%) | 3.0(0.88-10.52) OR
Marital Status 0.3 Fisher’s Exact
Married, N (%) 31(70.4%) | 15 (48.4%) | 16 (51.6%) 1.5 (0.64-3.84) RR
Not Married, N (%) 13 (29.6%) 4 (30.8%) 9 (69.2%) 2.1 (0.54-8.32) OR
Insurance Status 0.004* Chi-Square
Private, N (%) 27 (61.4%) | 7 (25.9%) 20 (74.1%) 0.4 (0.18-0.75) RR
Medicaid/Medicare/self-pay, N (%) | 17 (38.6%) | 12 (70.6%) 5(29.4%) 0.1 (0.04-0.56) OR
Body Mass Index (BMI) 0.1 Chi-Square
BMI > 30, N (%) 24 (54.6%) 8 (33.3%) 16 (66.7%) 0.6 (0.30-1.21) RR

BMI <30 20 (45.4%) | 11 (55.0%) 9 (45.0%) 0.4 (0.12-1.39) OR
Race/Ethnicity 0.7 Chi-Square
Black 17 (38.6%) 8(47.1%) 9 (52.9%) 1.2 (0.59-2.28) RR
Non-Black 27 (61.4%) | 11 (40.7%) 16 (59.36%) 1.3 (0.38-4.39) OR
25(OH)D < 20 ng/mL 0.03* Chi-Square
<20, N (%) 22 (50.0%) | 13 (59.1%) 9 (40.9%) 2.1(1.00-4.66) RR
220, N (%) 22 (50.0%) 6 (27.3%) 16 (72.7%) 3.9 (1.09-13.66) OR
25(OH)D <40 ng/mL 0.03* Fisher’s Exact
<40, N (%) 38 (86.4%) | 19 (50.0%) 19 (50.0%) N/A RR
240, N (%) 6 (13.6%) 0 (0.0%) 6 (100.0%) N/A OR
N N N p-value (*p<0.05)
Mean * Mean £ STD | Mean + STD | Odds Ratio (OR) (95%
STD range range Cl)
range
25(OH)D concentration 44 19 25 0.04* Student’s T-test
(ng/mL) 24.6 + 19.3+8.6 | 28.6+19.7 0.08 regression?
16.4 8.9-35.0 4.0-89.0 0.9 (0.91-1.01) OR
4.0-89.0
Multivariate Logistic Regression
Independent Variable Estimate | Standard | Wald Chi Odds Ratio 95% Confidence p-value
Error (SE) Square | Estimates (OR) Interval (Cl) *p<0.05
Age > 65 years 1.91 0.95 4.05 6.73 1.05-43.00 0.04*
Male 1.34 0.93 2.05 3.80 0.61-23.65 0.15
Black American -0.68 0.98 0.48 0.51 0.08-3.45 0.49
Unmarried -0.57 1.06 0.29 0.56 0.07-4.52 0.59
Medicaid/Medicare/Self 1.89 1.05 3.23 6.63 0.84-52.24 0.07
BMI >30 -0.21 1.00 0.05 0.81 0.11-5.73 0.83
25(0OH)D Concentration -0.02 0.04 0.35 0.98 0.91-1.06 0.55




In chi-square analysis, factors Independently associated with ICU admission Included age 2b5 years,
Medicaid/Medicare/self-pay, and 25(0OH)D concentrations categorized at cutpoints of 20 and 40 ng/mL.
Additionally, based on Student’s t-test, 25(OH)D concentration was found to be associated with ICU admission.
Subsequently, a multivariate logistic regression analysis was conducted to evaluate factors associated with ICU
admission, encompassing age >65 years, sex, race/ethnicity, marital status, insurance, BMI, and 25(0OH)D
concentration. Only age >65 years and not 25(OH)D concentration (estimate: -0.0232, p-value: 0.08, odds ratio:

0.9, 95% Cl: 0.91-1.06), exhibited a statistically significant, independent association with ICU admission during
hospitalization.



Table 5d. COVID Positive — Death during Hospitalization

Characteristic All Death No Death p-value (*p<0.05)
N=44 N=11 N=33 Relative Risk (RR)
(25.0%) (75.0%) Odds Ratio (OR)
(95% C1)
Ages 0.0002* Fisher’s Exact
> 65 years, N (%) 22 (50.0%) | 11(50.0%) | 11 (50.0%) N/A RR
< 65 years, N (%) 22 (50.0%) 0 (0.0%) 22 (100.0%) N/A OR
Gender 0.3 Fisher’s Exact
Males, N (%) 21 (47.7%) 7(33.3%) | 14(66.7%) 1.9 (0.65-5.63) RR
Females, N 23 (52.3%) 4(17.4%) | 19 (82.6%) 2.4 (0.58-9.72) OR
Marital Status 1.0 Fisher’s Exact
Married, N (%) 31 (70.4%) 8(25.8%) | 23(74.2%) 1.1 (0.35-3.56) RR
Not Married, N (%) 13 (29.6%) 3(23.1%) 10 (76.9%) 1.2 (0.25-5.30) OR
Insurance Status 0.01* Fisher’s Exact
Private, N (%) 27 (61.4%) 3(11.1%) | 24 (88.9%) 0.2 (0.07-0.77) RR
Medicaid/Medicare/self-pay, N (%) 17 (38.6%) 8 (47.1%) 9 (52.9%) 0.1 (0.03-0.65) OR
Body Mass Index (BMI) 1.0 Chi-Square
BMI > 30, N (%) 24 (54.6%) 6 (25.0%) 18 (75.0%) 1.0 (0.36-2.79) RR
BMI <30, N (%) 20 (45.5%) 5 (25.0%) 15 (75.0%) 1.0 (0.25-3.94) OR
Race/Ethnicity 0.2 Chi-Square
Black 17 (38.6%) 6 (35.3%) 11 (64.7%) 1.9 (0.69-5.29) RR
Non-Black 27 (61.4%) 5(18.5%) 22 (81.5%) 2.4 (0.60-9.64) OR
25(OH)D < 20 ng/mL 0.2 Fisher’s Exact
<20, N (%) 22 (50.0%) 8 (36.4%) 14 (63.6%) 2.7 (0.81-8.75) RR
>20, N (%) 22 (50.0%) 3 (13.6%) 19 (86.4%) 3.6 (0.81-16.15) OR

25(0OH)D < 40 ng/mL

0.3 Fisher’s Exact

<40, N (%) 38 (86.4%) 11 (28.9%) 27 (71.1%) N/A RR
240, N (%) 6 (13.6%) 0 (0.0%) 6 (100.0%) N/A OR
N N N p-value (*p<0.05)
Mean = STD Mean = Mean £ STD | Odds Ratio (OR) (95%
range STD range Cl)
range
25(OH)D concentration 44 11 33 0.05 Student’s T-test
(ng/mL) 246+16.4 | 18.6+8.3 | 26.6+18.2 0.2 Regression
4.0-89.0 8.9-34.7 4.0-89.0 0.9 (0.90-1.02) OR
Multivariate Logistic Regression

Independent Variable Estimate | Standard | Wald Chi Odds Ratio 95% Confidence p-value

Error (SE) Square Estimates (OR) Interval (Cl) *p<0.05
Age > 65 years 14.91 163.10 0.01 >999.99 <0.001-999.99 0.93
Male 0.19 1.28 0.02 1.21 0.10-14.84 0.88
Black American 1.16 1.29 0.82 3.20 0.26-39.89 0.37
Unmarried 1.63 2.01 0.65 5.08 0.10-261.91 0.42
Medicaid/Medicare/Self 1.49 1.42 1.11 4.46 0.28-71.95 0.29
BMI >30 0.87 1.34 0.40 2.40 0.16-35.49 0.52
25(0OH)D Concentration 0.04 0.08 0.23 1.04 0.89-1.21 0.63




In the chi-square analysis, age 2bb5 years and Medicaid/self-pay were identitied as tactors independently
associated with death due to COVID. While no deaths were observed among the 6 participants with a 25(0H)D
concentration >40 ng/ml, this association did not reach statistical significance (p=0.3). Subsequently, a
multivariate logistic regression analysis was conducted to further evaluate factors associated with death due to
COVID, including age =65, sex, race/ethnicity, marital status, insurance, BMI, and 25(0OH)D concentration. None
of these factors, including 25(0OH)D concentration (estimate +0.04, p-value=0.6, OR 1.04, Cl 0.89-1.21), showed
a statistically significant association.



Table 5e. COVID Positive — ICU Admission and/or Death during Hospitalization

Characteristic All ICU and/or No ICU or p-value (*p<0.05)
N=44 Death N=19 Death Odds Ratio (OR) /
(43.2%) N=25 (56.8%) Relative Risk (RR)
(95% CI)
Ages 0.0002* Fisher’s Exact
> 65 years, N (%) 22 (50.0%) 16 (72.7%) 6 (27.3%) 5.3(1.81-15.74) RR
< 65 years, N (%) 22 (50.0%) 3 (13.64%) 19 (86.4%) 16.9 (3.63-78.56) OR
Gender 0.07 Chi-Square
Males, N (%) 21 (47.7%) 12 (57.1%) 9 (42.9%) 1.9 (0.91-3.86) RR
Females, N 23 (52.3%) 7 (30.43%) 16 (69.6%) 3.0 (0.88-10.52) OR
Marital Status 0.3 Fisher’s Exact
Married, N (%) 31 (70.4%) 15 (48.4%) 16 (51.6%) 1.6 (0.64-3.84) RR
Not Married, N (%) 13 (29.6%) 4 (30.8%) 9 (69.2%) 2.1(0.54-8.32) OR
Insurance Status 0.004* Chi-Square
Private, N (%) 27 (61.4%) 7 (25.9%) 20 (74.1%) 0.4 (0.18-0.75) RR
Medicaid/Medicare/self-pay, N (%) 17 (38.6%) 12 (70.6%) 5(29.4%) 0.1 (0.04-0.56) OR
Body Mass Index (BMI) 0.1 Chi-Square
BMI > 30, N (%) 24 (54.6%) 8 (33.3%) 16 (66.7%) 0.6 (0.30-1.21) RR
BMI <30, N (%) 20 (45.4%) 11 (55.0%) 9 (45.0%) 0.4 (0.12-1.39) OR
Race/Ethnicity 0.7 Chi-Square
Black 17 (38.6%) 8 (47.1%) 9 (52.9%) 1.2 (0.59-2.28) RR
Non-Black 27 (61.4%) 11 (40.7%) 16 (59.3%) 1.3 (0.38-4.39) OR
25(0OH)D <20 ng/mL 0.03* Chi-Square
<20, N (%) 22 (50.0%) 13 (59.1%) 9 (40.9%) 2.2 (1.01-4.66) RR
>20, N (%) 22 (50.0%) 6 (27.3%) 16 (72.7%) 3.9 (1.09-13.66) OR
25(0OH)D < 40 ng/mL 0.03* Fisher’s Exact
<40, N (%) 38 (86.4%) 19 (50.0%) 19 (50.0%) N/A RR
>40, N (%) 6 (13.6%) 0 (0.0%) 6 (100.0%) N/A OR
N N N p-value (*p<0.05)
Mean £ STD | Mean £STD Mean £ STD | Odds Ratio (OR) (95%
range range range Cl)
25(0OH)D concentration 44 19 25 0.04* Student’s T-test
(ng/mL) 24.6+16.4 19.3+8.6 28.6 +19.7 0.08 regression
4.0-89.0 8.9-35.0 4.0-89.0 0.9 (0.91-1.01) OR
Multivariate Logistic Regression
Independent Variable Estimate | Standard Wald Odds Ratio 95% p-value
Error (SE) Chi Estimates Confidence *p<0.05
Square (OR) Interval (Cl)
Age > 65 years 1.91 0.95 4.05 6.73 1.05-43.00 0.04
Male 1.34 0.93 2.05 3.80 0.61-23.65 0.15
Black American -0.68 0.98 0.48 0.51 0.08-3.45 0.49
Unmarried -0.57 1.06 0.29 0.56 0.07-4.52 0.59
Medicaid/Medicare/Self -1.89 1.05 3.23 6.63 0.84-52.24 0.07
BMI > 30 -0.21 1.00 0.05 0.81 0.11-5.70 0.83
25(OH)D Concentration -0.02 0.04 0.35 0.98 0.91-1.06 0.55




In chi-square analysis, factors independently associated with ICU admission and/or death due to COVID included
age >65 years, insurance status, and 25(OH)D concentrations categorized at cutpoints of 20 and 40 ng/mL.
Additionally, based on Student’s t-test, 25(OH)D concentration was found to be associated with ICU admission
and/or death. In multivariate logistic regression, however, modeling age >65, sex, race, marital status,
insurance, BMI, only age >65 years exhibited a statistically significant, independent association with ICU

admission and/or death due to COVID.



