Exploring the association between vitamin D status and Corona Virus-19 infection in a cohort of adults aged 50 years and older

Carol L. Wagner, MD, John E. Baatz, PhD, Myla Ebeling, RA, Danforth A. Newton, PhD, Judith R. Shary, MS, Mathew Gregoski, PhD, Mark T. Wagner, PhD, David Zava, PhD, Carole Baggerly, BA, Sonya Ketchens, BS, Jeffrey Korte, PhD, Bruce W. Hollis, PhD

PII: S2667-2685(25)00056-7

DOI: https://doi.org/10.1016/j.nutos.2025.05.007

Reference: NUTOS 529

To appear in: Clinical Nutrition Open Science

Received Date: 4 September 2024

Revised Date: 21 May 2025 Accepted Date: 23 May 2025

Please cite this article as: Wagner CL, Baatz JE, Ebeling M, Newton DA, Shary JR, Gregoski M, Wagner MT, Zava D, Baggerly C, Ketchens S, Korte J, Hollis BW, Exploring the association between vitamin D status and Corona Virus-19 infection in a cohort of adults aged 50 years and older, *Clinical Nutrition Open Science*, https://doi.org/10.1016/j.nutos.2025.05.007.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and Metabolism.

- 1 Exploring the association between vitamin D status and Corona Virus-19 infection in a cohort of
- 2 adults aged 50 years and older

3

- 4 Carol L. Wagner, MD¹, John E. Baatz, PhD², Myla Ebeling, RA¹, Danforth A. Newton, PhD², Judith
- 5 R. Shary, MS¹, Mathew Gregoski, PhD³, Mark T. Wagner, PhD⁴, David Zava, PhD⁵, Carole Baggerly,
- 6 BA*6, Sonya Ketchens, BS⁷, Jeffrey Korte, PhD³, and Bruce W. Hollis, PhD¹
- 7 *post-humous
- 8 ¹Division of Neonatology, Department of Pediatrics, Medical University of South Carolina,
- 9 Charleston, SC
- 10 ²Darby Children's Research Institute, Department of Pediatrics, Medical University of South
- 11 Carolina, Charleston, SC
- 12 ³Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
- ⁴Department of Neurology, Medical University of South Carolina, Charleston, SC
- 14 ⁵ZRT group, ZRT Laboratories, Portland, OR
- 15 ⁶Grassroots Health Nutrient Research Institute, Encinitas, CA
- ⁷College of Medicine, Medical University of South Carolina, Charleston, SC
- 17 Address all correspondence to:
- 18 Carol L. Wagner, MD
- 19 MUSC
- 20 10 McClennan Banks Drive, MSC 915
- 21 Charleston, SC 29425
- 22 Tel: (843) 792-2112; Email: wagnercl@musc.edu

23	Keywords: vitamin D, cholecalciferol, older adults, corona virus infection, COVID-19 infection,
24	COVID-19 hospitalization, COVID-19 pneumonia
25	
26	Abbreviations:
27	25-hydroxy-vitamin D: 25(OH)D
28	1,25-dihydroxy-vitamin D: 1,25(OH)₂D
29	Body mass index: BMI
30	Corona Virus-19 infection: COVID-19 infection
31	COVID-negative: COVID-Neg
32	COVID-positive: COVID-Pos
33	Intensive care unit: ICU
34	Liquid chromatography-mass spectroscopy/triple quadrupole mass spectroscopy: LC-MS/MS
35	PCR: polymerase chain reaction
36	SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
37	Vitamin D binding protein: VDBP

Abstract

39

58

38

Objective: Evaluate the association between vitamin D (vitD) status and Corona Virus-19 (COVID-40 41 19) infection in adults aged 50 years and older. 42 Design: Adults ≥50 undergoing COVID-19 testing from July 2020 to December 2021, without prior 43 vaccination, consented to blood analysis. SARS-CoV-2 PCR confirmed current COVID-19 infection. 44 VitD status was assessed via 25(OH)D concentration (LCMS/MS, ZRT Labs, Portland, OR). 45 Sociodemographic data were collected at enrollment. Statistical analyses (SAS 9.4) examined 46 associations between sociodemographics, COVID-19, and vitD status. Multivariate logistic 47 regression analyzed factors linked to COVID-19 or vitD status. 48 Results: Of 131 participants, 46.6% were ≥65 years old, 71.0% married, 19.9% Black American, 49 36.6% male, 38.9% Medicaid/Medicare/self-pay, and 42.8% BMI≥30. VitD status and Black 50 American (p=0.0001) significantly associated with COVID-19 infection (p=0.0001). Black American 51 (p=0.0003), males (p=0.003), and BMI (p=0.007) were inversely associated with 25(OH)D 52 concentration. In a multiple logistic regression model predicting COVID-19 infection, only vitamin 53 D status remained significant after controlling for certain sociodemographic and clinical factors 54 (p<0.0001, OR 0.92, 95% CI 0.89-0.95). 55 Of the 44 COVID-positive participants, 35 (79.6%) were hospitalized and 19 (43.2%) were 56 admitted to the Intensive Care Unit (ICU). Hospitalization due to COVID-19 was associated with 57 age ≥65 years old (p=0.02; OR 12.0, 95% CI 1.34-106.79), male (p=0.02, OR 10.7, 95% CI 1.20-

94.73), and 25(OH)D <40 ng/mL (p=0.0006, OR 42.5, 95% CI 3.90-461.01). In multivariate analysis,

the association between vitamin D status and the risk of COVID-related hospitalization remained significant and inversely associated (p=0.03, OR 0.88, 95% CI 0.78-0.99).

In unadjusted analysis, COVID pneumonia was associated with male sex (p=0.049; OR 4.6, 95% CI 1.06-20.16) and 25(OH)D <40 ng/mL (p=0.006, OR 18.8, 95% CI 1.9-184.10). Participants with COVID infection and 25(OH)D <20 ng/mL were 2.1 times more likely to be admitted to ICU/death (p=0.03). In unadjusted analysis, ICU admission and/or death were linked to age ≥65 years (p=0.0002, OR 16.9, 95% CI 3.63-78.56), Medicaid/Medicare/self-pay insurance status (p=0.004, OR 0.1, 0.04-0.56), and 25(OH)D <20 (p=0.03, OR 3.9, 1.09-13.66) and <40 ng/mL (p=0.03); however, only age ≥65 remained significant in multivariate analysis (p=0.04, OR 6.7, CI 1.05-43.0).

Conclusions: Lower 25(OH)D concentration was a significant predictor and/or contributor to COVID-19 infection, suggesting the importance of maintaining adequate vitamin D status in reducing infection risk and mitigating severe outcomes.

72 Word Count: 347

Introduction

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

73

Vitamin D is a fat-soluble secosteroid hormone that is synthesized in the skin upon exposure to sunlight and can also be obtained from certain foods or through supplements. Once ingested, vitamin D is converted into 25-hydroxy-vitamin D (25(OH)D) in the liver and then into the active form, 1,25-dihydroxy-vitamin D (1,25(OH)₂D), in the proximal tubules of the kidney and other cells in the body. All forms of vitamin D in circulation are associated with the vitamin D binding protein (DBP) or albumin, with varying affinities.^{2,3} While the active form of vitamin D plays a critical role in maintaining calcium homeostasis and bone health by regulating the balance of calcium and phosphorus in the body, vitamin D and its metabolites also influence cell growth and differentiation and affect the function of both the innate and adaptive immune systems.⁴ Circulating concentrations of vitamin D as an essential nutrient and preprohormone have also been associated with several health conditions, including cardiovascular disease, preeclampsia, gestational diabetes, autoimmune diseases such as multiple sclerosis and systemic lupus, as well as some cancers (breast, colon and prostate).5-10 The serum concentration of 25(OH)D is widely used as a marker of vitamin D status, and inadequate levels of vitamin D can lead to vitamin D deficiency. Furthermore, vitamin D has been shown to play a role in racial/ethnic health disparities. 11-13

91

92

93

94

Historically, the Endocrine Society defined vitamin D sufficiency as a serum 25(OH)D concentration of greater than 30 ng/mL. ¹⁴ Hollis et al ¹⁵ and others ¹⁶ have suggested optimal vitamin D status occurs when circulating 25(OH)D concentration is at least 40 ng/mL. Studies

have shown that higher concentrations of vitamin D are associated with enhanced immune response and reduced severity of viral respiratory infections, including influenza.¹⁷⁻²³ While most of the studies on this topic have focused on influenza, the same immune response mechanisms are likely to apply to coronaviruses, given the similarities between these diseases in the lower respiratory tract. Vitamin D supplementation has also been shown to be more effective than standard flu vaccines in preventing respiratory infections, especially in those who were deficient prior to supplementation.^{20,24} The link between vitamin D deficiency and susceptibility to certain viruses, including swine flu, has been recognized as far back as 1949 in animal studies.^{25,26} Critically ill individuals upon admission to the intensive care unit (ICU) have a higher prevalence of vitamin D deficiency, partly attributable to pre-existing malnutrition associated with disease states and lack of sunlight exposure. Conditions such as sepsis, acute respiratory distress syndrome, and acute kidney injury have all been associated with vitamin D deficiency, leading to increased morbidity, mortality, and extended ICU stays.²⁸

Vitamin D deficiency exhibits a higher prevalence in certain demographic groups characterized by factors such as darker skin pigmentation, as observed in Black Americans and Hispanic individuals, ^{27,28} as well as in older adults who encounter limited sun exposure, potentially due to reduced dermal substrate for vitamin D synthesis. ²⁹ This deficiency has been correlated with elevated rates of morbidity and mortality in affected populations. ³⁰ Moreover, individuals belonging to these groups have displayed more severe clinical outcomes following infection with SARS-CoV-2^{31,32} (severe acute respiratory syndrome coronavirus 2; a strain of coronavirus that causes COVID-19, the respiratory illness responsible for the COVID-19 pandemic and the

development of COVID-19), providing additional compelling evidence regarding the pivotal role of vitamin D in shaping immune responses and bolstering resistance to infections.

Given the documented prevalence of vitamin D deficiency among high-risk populations and the well-established role of vitamin D in modulating immune function, encompassing both innate and adaptive immunity,³³ this study sought to investigate the relationship between vitamin D status and Corona Virus-19 (COVID-19) infection. Acknowledging the multifaceted nature of COVID-19 infection, which encompasses factors such as prior exposure to coronavirus variants, duration of viral exposure, and individual health conditions—particularly the heightened susceptibility associated with chronic illnesses like diabetes and cardiovascular disease, all of which intricately intersect with immune function and vitamin D status—our study was designed to control for these confounding variables.

The primary hypothesis posited that participants at the time of SARS-CoV-2 testing presenting with vitamin D deficiency (25(OH)D <20 ng/mL) or insufficiency (25(OH)D ≥20<40 ng/mL) would exhibit an elevated likelihood of COVID-19 diagnosis compared to individuals with vitamin D sufficiency (25(OH)D ≥40 ng/mL). This hypothesis was formulated irrespective of demographic variables such as race, sex, age, and body mass index (BMI). In addition to the primary hypothesis, a secondary hypothesis was examined, postulating that individuals who had COVID-19 infection would be more likely to experience more severe illness, as defined by hospitalization, pneumonia, ICU admission, and/or death, particularly in the presence of vitamin D deficiency.

Our study focused on a cohort of adults aged 50 years and older, recognizing their increased vulnerability to COVID-19, and encompassed individuals who had recently undergone PCR (polymerase chain reaction) testing for COVID-19. Additionally, participants consented to the analysis of their vitamin D status through blood sample evaluation. Enrollment of participants occurred prior to the availability and/or administration of any COVID-19 vaccine. To gauge infection severity, we utilized objective criteria, including the diagnosis of radiographic pneumonia, hospitalization rates, ICU admission, and mortality rates. The primary objective of this study was to discern the nuanced relationship between COVID-19 status at the time of testing and the severity of infection, while meticulously considering baseline vitamin D status and thoughtfully controlling for other relevant risk factors.

Methods:

Study Design: This study included adults who were 50 years of age or older and had undergone testing for COVID-19. At the time of their enrollment, no participants had received immunization with any COVID-19 vaccines. Participants provided written informed consent (Pro00099939), and the study was registered with ClinicalTrials.gov (Identifier: NCT04482673). Ninety-five participants (87 with negative COVID-19 status at study entrance and 8 with COVID-19 infection at the time of enrollment) voluntarily took part in a randomization process where they were provided either vitamin D supplementation (6000 IU/day) or vs placebo (0 IU/day). The analysis was performed looking at health outcomes based on circulating vitamin D status at the time of study entrance. Treatment had not been enacted at the time of study entry and had not been in place when analyzing vitamin D status (baseline) and hospitalization or pneumonia diagnosis at

161	the time of presentation. ICU admission was during the participant's admission due to acute
162	COVID infection and was within one month of diagnosis.
163	Study Setting: All participants were recruited from the Medical University of South Carolina, an
164	urban university hospital in Charleston, SC, USA.
165	Study Participants: The entry criteria for this study were age of 50 years or greater and a recent
166	COVID-19 test using the methodology described below within 7 days of enrollment into the study
167	with or without notable disease symptoms. The only inclusion criteria were that the participant
168	had to be fluent in English, could not have had a known prior COVID-19 infection, and had the
169	ability to give written informed consent.
170	Study Data Collection: A standardized questionnaire was utilized to gather information on the
171	sociodemographic and clinical characteristics of the study cohort. This included details such as
172	age, gender, marital status, ethnicity, educational background, history of chronic illnesses,
173	current medications, and vitamin intake.
174	Polymerase Chain Reaction (PCR) Testing for current SARS-CoV-2 (COVID-19) Infection: Each
175	participant had a nasal swab inserted directly into one of the two nares swirled for 10 seconds
176	per Center for Disease Control guidelines. ³⁴ The nasal swab was immediately placed in buffer,
177	placed in a plastic bag, then sent to MUSC Clinical Chemistry where the sample was tested for
178	the presence or absence of SARS-CoV-2 RNA by PCR, a nucleic acid amplification test. Results
179	were reported in the electronic medical record at MUSC (EPIC) within 48 hours of sample
180	collection.
181	Vitamin D Status Defined: We defined vitamin D status by combining criteria from the Endocrine
182	Society at the time of study design, ¹⁴ our previous research, ¹⁵ and findings from others. ¹⁶

Circulating 25(OH)D concentration, expressed in ng/mL, was categorized as follows: a) deficiency: <20 ng/mL; b) insufficiency: ≥20 and <40 ng/mL; and c) sufficiency: ≥40 ng/mL.

Measuring Vitamin D Status through Total Circulating 25(OH)D Concentration: The 25(OH)D concentration was determined using a LCMS/MS method from ZRT Laboratories in Portland, OR.

The methodology used was standardized, and the results were cross validated with the Hollis radioimmunoassay method, which was in use at our laboratory (Diasorin, Stillwater, MN).

Samples were analyzed by participant identification number and laboratory personnel were blinded to SARS-CoV-2 (COVID-19 infection) status.

Statistical Analysis:

Primary Analysis - Predicting COVID-19 Infection: The primary objective of this study was to assess the relationship between COVID-19 infection and total circulating 25(OH)D concentration. Initially, univariate and bivariate analyses were performed to identify factors associated with COVID-19 status (positive or negative). Sociodemographic and clinical characteristics were assessed for their potential associations with COVID-19 status and baseline 25(OH)D concentration using Chi-square and Student's t-test, respectively.

A logistic regression model was then constructed to predict COVID-19 infection status at the time of testing. This model incorporated variables that were independently associated with COVID-19 status from the univariate and bivariate analyses. The logistic regression aimed to identify predictors of COVID-19 infection, allowing us to understand the factors associated with testing positive for the virus.

<u>Secondary Analysis - Predicting COVID-19 Infection Severity</u>: In a separate analysis focusing exclusively on participants who tested positive for COVID-19, we aimed to predict the severity of COVID-19 illness. Initially, univariate and bivariate analyses were conducted to identify factors associated with infection severity, which was defined by outcomes such as radiographic pneumonia, hospitalization, ICU admission, and mortality.

A second logistic regression model was constructed to predict COVID-19 infection severity among those who tested positive. This model included variables found to be associated with infection severity in the initial analyses. The objective of this secondary analysis was to understand the determinants of illness severity within the COVID-19 positive group.

These two logistic regression models are distinct and address separate research questions. The first model focuses on the likelihood of testing positive for COVID-19 infection, while the second model explores the factors contributing to the severity of COVID-19 illness among those who contracted the viral infection. Both analyses provide valuable insights into the dynamics of COVID-19 infection and its impact on study participants. Statistical analyses were completed with SAS 9.4 and SPSS 28 and examined associations between sociodemographics, COVID-19, and vitamin D status. Multivariate logistic regression analyzed factors linked to COVID-19 or vitamin D status.

Results

Each participant underwent a SARS-CoV-2 PCR test within 7 days prior to enrollment to confirm study inclusion of being either COVID-negative (COVID-Neg) with no prior known history of COVID

infection or COVID-positive (COVID-Pos) with a current COVID infection at the time of study enrollment. Initially, the cohort was comprised of 134 participants; however, after a meticulous review of medical records following consent, it was found that three individuals allocated to the COVID-negative group had a history of remote COVID infection confirmed by prior PCR testing. Consequently, these three participants were excluded from the analysis, resulting in a final sample size of 131 participants, with 87 individuals in the COVID-negative group and 44 in the SARS-CoV-2 positive (COVID-Pos) group at the time of enrollment. Analysis of demographic characteristics (see **Table 1**) revealed no statistically significant difference in mean age, age group distribution (65 vs. ≥ 65 years), sex distribution, marital status, insurance status, or BMI between the two groups. Black American participants exhibited a 2.5-fold higher likelihood of being COVID-Pos compared to Non-Black Americans (p<0.0001). In terms of vitamin D status, as measured by total circulating 25(OH)D concentration, a significant disparity was observed between the COVID-Pos and COVID-Neg groups: COVID-pos participants displayed a statistically lower mean level (24.6 ± 16.4 ng/mL) compared to those participants in the COVID-neg group $(47.7 \pm 17.8 \text{ ng/mL}; p<0.0001).$

241

242

243

244

245

246

247

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Factors that influence vitamin D status historically were analyzed for this cohort and are listed in **Table 2**. Being male was associated with lower mean 25(OH)D concentration than females (32.5 v 44.2 ng/mL; p=0.0006). Black Americans had significantly lower mean 25(OH)D compared to Non-Black Americans (26.4 v 43.3 ng/mL; p=0.0001). BMI was significantly associated with vitamin D status (\geq 30: 34.2 v <30: 44.2 ng/mL; p=0.004). Age \geq 65 years, marital status and insurance status were not significantly associated with vitamin D status.

Table 3 presents bivariate analyses comparing sociodemographic and clinical characteristics between participants who tested positive for COVID and those who tested negative. The main differences between the groups were race/ethnicity and baseline 25(OH)D concentration and threshold levels: COVID-pos participants were more likely Black American (p<0.0001) and had significantly lower 25(OH)D concentrations (p<0.0001). Black American were 2.5 times more likely than non-Black Americans to be COVID-pos at presentation. Those who were vitamin D deficient with 25(OH)D concentration of <20 ng/mL (deficiency) were 4.2 times as likely to be COVID-pos than those with a level of ≥20 ng/mL. Those with a 25(OH)D concentration of <40 ng/mL (deficiency or insufficiency) were 5.2 times more likely to be COVID-pos than those with a level of ≥40 ng/mL.

Factors significant in bivariate analyses or previously associated with either COVID infection or vitamin D status were included in a multivariate logistic regression model in identifying independent predictors of COVID infection (age \geq 65 years, sex, race/ethnicity, marital status, insurance status, BMI \geq 30, and baseline 25(OH)D concentration). The only factor that remained statistically significant in the model was 25(OH)D concentration (p <0.0001, 95% CI 0.90.95; OR 0.92) (**Table 4a**), which was inversely related to COVID positive status: those with lower 25(OH)D were more likely to be COVID positive. When the model was changed to include 25(OH)D at the threshold of <20 ng/mL (**Table 4b**), with the other factors remaining the same, those with 25(OH)D <20 ng/mL were 24.9 times more likely to be COVID pos than those with 25(OH)D \geq 20 ng/mL (p<0.0001, 95% CI 6.14-100.82). When vitamin D status was dichotomized, there was a

270	trend where being Black American also was an independent predictor of COVID-pos status
271	(p=0.05, OR 3.37, 95% CI 1.009-11.26).
272	
273	A summary of illness severity of those who were COVID-pos in this cohort is found in Table 5a -
274	5e . Of the 44 COVID-pos participants, 35 (79.6%) were hospitalized and 19 (43.2%) were admitted
275	to the Intensive Care Unit (ICU). Thirty-one (70.5%) were diagnosed with pneumonia confirmed
276	by chest radiograph at the time of diagnosis. Of the 19 admitted to the ICU, 11 (57.9%) died due
277	to acute COVID infection and its complications.
278	
279	As shown in Table 5 a, those who required hospitalization due to their acute COVID infection
280	compared to those who were not differed significantly by age (those hospitalized were more
281	likely older, p=0.02), sex (males were more likely than females to be hospitalized, p=0.02), and
282	by 25(OH)D concentration at presentation <40 ng/mL (p=0.0006). Those with 25(OH)D <40 ng/mL
283	were 5.4 times more likely to be hospitalized than those with a level ≥40 ng/mL. In a multivariate
284	logistic regression analysis performed to assess factors associated with hospitalization, including
285	age ≥65, sex, race/ethnicity, marital status, insurance, BMI, and 25(OH)D concentration, only
286	25(OH)D concentration remained a significant independent predictor of hospitalization

Those participants who were diagnosed with COVID pneumonia confirmed by radiograph (**Table 5b**) did not differ from those without pneumonia on the basis of age, marital status, insurance status, BMI, race/ethnicity, or 25(OH)D <20 ng/mL but did differ on the basis of sex (males were

(estimate: -0.14, p-value=0.008, odds ratio: 0.9, 95% CI: 0.78-0.99).

1.5 times more likely than females to have radiographic-confirmed pneumonia at presentation than females, p=0.049) and 25(OH)D concentration <40 ng/mL (p=0.006). Those with a 25(OH)D concentration <40 ng/mL were 4.7 times as likely to be diagnosed with COVID pneumonia (p=0.006) than those with a level of ≥40 ng/mL. In the bivariate logistic regression, 25(OH)D concentration was significantly associated with COVID pneumonia; however, in the multivariate logistic regression analysis, after controlling for other independent factors, 25(OH)D concentration was no longer significant (estimate: -0.08, p-value=0.05, odds ratio: 0.9, 95% confidence interval: 0.86-1.002).

Intensive Care (ICU) admission (**Table 5c**) was associated with age (those who were 65 years or older were 5.3 times more likely to be admitted to the ICU (p=0.0002), have Medicaid/Medicare/self-pay (p=0.004), and vitamin D deficiency and/or insufficiency (p=0.03). In a multivariate logistic regression analysis for ICU admission, there were no independent factors identified that were associated with ICU admission. Death attributed to COVID infection in this cohort (see **Table 5d**) was associated with age ≥65 years and insurance status but were no longer significant in the multivariate regression model. While no deaths were observed among the 6 participants with a 25(OH)D level ≥40 ng/mL at presentation, this association did not reach statistical significance. ICU admission and/or death attributed to COVID infection (see **Table 5e**) were associated with age (those ≥65 years were 5.3 times more likely to have an ICU admission and/or death), Medicaid/Medicare/self-pay insurance status, and 25(OH)D levels categorized at cutpoints of 20 and 40 ng/mL. In multivariate logistic regression, however, none of these factors exhibited a statistically significant association with ICU admission and/or death due to COVID.

Discussion

This pilot study aimed to explore the potential correlation between vitamin D status and COVID-19 infection among adults aged 50 years and older, while considering various factors that might impact both vitamin D status and the likelihood of contracting COVID-19. Building on previous research by Hollis et al. regarding optimal vitamin D status, ¹⁵ our main hypothesis proposed that older adults with vitamin D deficiency (25(OH)D <20 ng/mL) or insufficiency (25(OH)D ≥20 to <40 ng/mL) would have a higher risk of being diagnosed with COVID-19 compared to those with sufficient vitamin D levels, defined as 25(OH)D concentrations ≥40 ng/mL. Additionally, we hypothesized that individuals with both COVID-19 infection and vitamin D deficiency would experience more severe illness.

Within this cohort of adults aged 50 years and older, the analysis revealed various factors that independently were associated with positive COVID-19 status at the time of testing. These factors included sex, insurance status, race/ethnicity, and vitamin D status. Specifically, males, individuals with Medicaid/Medicare or self-pay without insurance, those of Black-American ethnicity, and those with lower circulating 25(OH)D concentrations exhibited a heightened likelihood of testing positive for COVID-19. Additionally, among those who tested positive for COVID-19, a relationship emerged between lower 25(OH)D concentrations and the occurrence of hospitalization and pneumonia.

To ascertain the independent influence of vitamin D status on testing positive for COVID-19 infection, a bivariate logistic regression model was employed. The results indicated that vitamin D status remained the sole factor that exhibited a statistically significant association with COVID-19 infection. Similarly, in the multivariate logistic regression model showed that vitamin D status was inversely related to testing positive for COVID-19 infection at the time of presentation, with lower 25(OH)D concentration more likely associated with COVID-19 infection. When vitamin D status was dichotomized in the multivariate logistic regression, 25(OH)D <20 ng/mL as well as being Black American were independently associated with COVID-pos status.

Further examination of COVID-positive individuals revealed a significant association between vitamin D deficiency, defined by 25(OH)D concentrations below 20 ng/mL, and insufficiency, defined by 25(OH)D concentrations below 40 ng/mL, and increased rates of hospitalization, pneumonia, ICU admission, and/or death. Specifically, in bivariate logistic regression, individuals who were deficient or insufficient in vitamin D were 4.7 times more likely to have radiographic evidence of pneumonia and 5.4 times more likely to require hospitalization. However, in this small subgroup, the significance was attenuated when other factors were included in a multivariate logistic regression. Despite this attenuation, these findings highlight the significant impact of vitamin D deficiency on the morbidity associated with COVID infection within this specific cohort.

Emerging evidence suggests that low vitamin D levels could potentially exacerbate COVID-19 infection, particularly when the viral infection reaches the lower respiratory tract. The virus

targets alveolar type II epithelial cells (ATII), which are pivotal in producing pulmonary surfactant and facilitating lung repair. These cells are susceptible to infection due to their high expression of the angiotensin-converting enzyme 2 (ACE2) receptor, the primary cellular attachment point for SARS-CoV-2. ³⁵⁻³⁷ Previous research has indicated that innate and adaptive immune cells in the lungs, as well as ATII cells themselves, have the capability to synthesize the active form of vitamin D and are strongly regulated by this hormone. ^{38,39} Disruption of ATII cell functions resulting from SARS-CoV-2 infection could lead to pulmonary surfactant deficiency, dysregulation of the local renin-angiotensin system, impaired lung fluid clearance and repair mechanisms. These processes, coupled with the subsequent inflammatory cytokine storm, contribute to the development of acute respiratory distress syndrome, which is a defining feature of severe COVID-19 infection and pneumonia. Notably, these adverse outcomes disproportionately affect racial and ethnic minorities in the United States. Adequate vitamin D levels may enhance the pulmonary immune response against the virus, mitigate the harmful cytokine storm, and alleviate surfactant dysregulation, potentially preventing or ameliorating the acute syndrome.

Furthermore, a recent meta-analysis conducted by Meng et al.⁴⁰ involving 8,128 participants across 8 clinical trials revealed valuable insights. While the meta-analysis did not find a significant reduction in the rate of SARS-CoV-2 infection with vitamin D supplementation, it did indicate improved clinical outcomes, including a reduced need for ICU admissions (RR 0.63; 95% CI 0.44 to 0.89) and decreased reliance on mechanical ventilation (RR 0.58; 95% CI 0.39 to 0.84), albeit without a statistically significant effect on mortality. Subgroup analyses within this meta-analysis, focused on patients with specific conditions, did, however, reveal a significant reduction in

mortality among individuals with preexisting vitamin D deficiency (RR 0.76; 95% CI 0.58 to 0.98). These findings suggest that vitamin D may play a role in mitigating illness severity, particularly in cases where vitamin D deficiency is known or exists. Notably, our findings align with the observation that vitamin D deficiency was more prevalent among individuals who tested positive for SARS-CoV-2 infection.

This pilot study exhibits several strengths that enhance its value. Firstly, it is notable for its diverse participant demographics, encompassing individuals from various racial and ethnic backgrounds. Additionally, the study includes participants with a wide range of health statuses and varying body mass indices (BMI), adding to the robustness and generalizability of the findings. Moreover, the analysis is enriched by the inclusion of detailed socioeconomic and clinical characteristics, which allows for a comprehensive exploration of potential associations.

This study has some limitations that should be acknowledged. Firstly, the reliance solely on PCR testing for COVID-19 diagnosis, without subsequent antibody confirmation, represents a potential limitation. While PCR testing is highly sensitive for detecting active infections, there is a possibility that participants with previous COVID infections may have been included, leading to a potential underestimation of COVID-19 cases. However, it is important to note that the study meticulously collected data on signs and symptoms of infection from both COVID-negative and COVID-positive participants, which helped mitigate some of the potential limitations associated with PCR-based diagnosis. Additionally, all participants received care through the same medical center system, utilizing a centralized electronic medical record (EMR). Each participant's EMR

was thoroughly screened for prior SARS-CoV-2 testing to minimize the inclusion of individuals with previous COVID infections.

Another limitation of this study is the relatively small sample size of participants, which was influenced by the challenges of recruiting unvaccinated individuals once COVID-19 vaccines became widely available. Additionally, only six COVID-positive patients had serum 25(OH)D concentrations ≥ 40 ng/mL. Given this very small number, severity endpoints related to this threshold should be interpreted with caution. While the ≥ 40 ng/mL threshold may represent a better benchmark for defining vitamin D adequacy compared to the 20 ng/mL threshold, the sample size was insufficient to perform robust comparisons of outcomes between 25(OH)D levels of 20–40 ng/mL and those ≥ 40 ng/mL. Consequently, caution is warranted in interpreting the findings related to severe outcomes when comparing 25(OH)D levels <40 ng/mL with those ≥ 40 ng/mL, due to the small number of participants in the latter group.

Furthermore, the small sample size of participants receiving vitamin D supplementation is another limitation in assessing its potential effect on ICU admission and/or death. Of the 44 participants randomized to the longitudinal treatment arm of the study, only eight were supplemented with vitamin D, 4 in the treatment group and 4 in the placebo group, with one hospitalized at study entry with COVID-19 pneumonia. It remains unclear, then, whether vitamin D supplementation mitigated disease severity, as the study lacked sufficient statistical power to draw definitive conclusions. Despite these limitations, the findings underscore the potential

importance of maintaining adequate vitamin D status during a viral epidemic, particularly in the early stages of a novel virus outbreak when vaccines are not yet available.

In summary, in this small cohort, vitamin D status was associated with COVID-19 infection after controlling for other independent factors. In addition, those hospitalized due to COVID infection were more likely to be vitamin D insufficient or deficient. This exploratory study highlights the importance of vitamin D status in relation to COVID-19 risk, with lower 25(OH)D concentration found to be a significant predictor of COVID-19 infection and severity of illness. These findings have implications for mitigating the risk of acute viral infections such as COVID-19 and suggest that maintaining adequate vitamin D levels may be important in reducing the risk of COVID-19 infection in older adults. Further research is needed to assess the impact of achieving optimal vitamin D status of at least 40 ng/mL on the longitudinal risk of COVID infection in older adults.

Acknowledgements

We express our gratitude to the participants of this pilot study who volunteered their time during a period marked by restricted access to public facilities ("lockdown") and numerous uncertainties regarding risk and survival. Additionally, we extend our appreciation to ZRT Laboratories in Portland, Oregon, for their invaluable assistance in measuring the participants' vitamin D status. Their provision of this service on de-identified samples without charge was instrumental to the success of this study.

During the preparation of this work, the author(s) utilized Grammarly® and ChatGPT-AI® to enhance the grammar and clarity of the content. The content of this work was both created and reviewed by the authors. Following the use of these tools/services, the authors thoroughly reviewed and edited the content as necessary and assume full responsibility for the publication's accuracy and integrity.

Grants and Funding

This study was supported, in part, by the National Center for Advancing Translational Sciences of the National Institutes of Health under Grant Number UL1 TR001450, by a grant from South Carolina Governor's COVID Fund intramural MUSC grant and a grant from MUSC Health Science Foundation.

Dedication

The authors dedicate this manuscript to the memory of Carole A. Baggerly, MS, co-author, whose unwavering passion and dedication to advancing the understanding of vitamin D deficiency inspired this work and countless others in the field. Carole was instrumental in the conception, design, and successful completion of this study. Her tireless efforts to educate the world about the importance of vitamin D have left an indelible mark on public health and scientific research. She will be deeply missed, but her legacy will continue to guide and inspire future endeavors in this field.

466	Presentations
467	Presented at the Vitamin D Workshop, Cork, Ireland, June 27, 2024.
468	
469	Author Contributions to the Scholarly Activities of this study:
470	Carol L. Wagner, MD: conceptualization, study design/methodology, investigation and practical
471	performance, validation and data analysis, review of data, preparation of original and revisions
472	of manuscript, critical review of manuscript, supervision—oversight and study leader, funding
473	acquisition
474	John E. Baatz, PhD: conceptualization, study design/methodology, investigation and practical
475	performance, validation and data analysis, review of data, revision of manuscript, critical review
476	of manuscript
477	Myla Ebeling, RA: study design/methodology, formal analysis, data curation, revision of
478	manuscript and critical review of manuscript
479	Danforth A. Newton, PhD: conceptualization, study design/methodology, investigation and
480	practical performance, validation and data analysis, review of data, revision of manuscript,
481	critical review of manuscript
482	Judith R. Shary, MS: conceptualization, project administration, investigation and practical
483	performance, review of data, revision of manuscript, critical review of manuscript
484	Mathew Gregoski, PhD: Methodology, validation and data analysis, formal statistical analysis,
485	data curation, revision of manuscript and critical review of manuscript
486	Mark T. Wagner, PhD: conceptualization, study design/methodology, revision of manuscript,
487	critical review of manuscript

488	<u>David Zava, PhD</u> : conceptualization, study design/methodology, investigation and practical
489	performance of 25(OH)D concentration measurements in blinded fashion, validation and data
490	analysis, review of data, preparation of revisions of manuscript, critical review of manuscript
491	Carole Baggerly, BA: conceptualization, study design/methodology, investigation and practical
492	performance, review of data, preparation of revisions of manuscript, critical review of manuscript
493	Sonya Ketchens, MD: review of data, preparation of revisions of manuscript, critical review of
494	manuscript
495	<u>Jeffrey Korte, PhD</u> : conceptualization, study design/methodology, review of data, preparation of
496	revisions of manuscript, critical review of manuscript
497	Bruce W. Hollis, PhD: conceptualization, study design/methodology, revision of manuscript,
498	critical review of manuscript
499	
500	Conflict of Interest Statement: All authors have no conflicts of interest to disclose or declare.

501	Refere	ences
502		
503	1.	Hollis BW, Wagner CL, Drezner MK, Binkley NC. Circulating vitamin D3 and 25-
504		hydroxyvitamin D in humans: An important tool to define adequate nutritional vitamin D
505		status. The Journal of steroid biochemistry and molecular biology 2007;103(3-5):631-4.
506		(In eng). DOI: 10.1016/j.jsbmb.2006.12.066.
507	2.	Hollis B. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency:
508		implications for establishing a new effective dietary intake recommendation for vitamin
509		D. The Journal of nutrition 2005;135:317 - 22.
510	3.	Hollis BW, Wagner CL. Substantial Vitamin D Supplementation Is Required during the
511		Prenatal Period to Improve Birth Outcomes. Nutrients 2022;14(4). DOI:
512		10.3390/nu14040899.
513	4.	Hawrylowicz CM, Santos AF. Vitamin D: can the sun stop the atopic epidemic? Curr Opin
514		Allergy Clin Immunol 2019. DOI: 10.1097/ACI.0000000000000613.
515	5.	Zittermann A, Schleithoff SS, Koerfer R. Vitamin D insufficiency in congestive heart
516		failure: why and what to do about it? Heart failure reviews 2006;11(1):25-33. (In eng)
517		(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
518		ation&list_uids=16819575).
519	6.	Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-hydroxyvitamin D and risk of myocardial
520		infarction in men: a prospective study. Archives of internal medicine 2008;168(11):1174-
521		80. (Research Support, N.I.H., Extramural). DOI: 10.1001/archinte.168.11.1174.

522	7.	Zhang Q, Cheng Y, He M, Li T, Ma Z, Cheng H. Effect of various doses of vitamin D
523		supplementation on pregnant women with gestational diabetes mellitus: A randomized
524		controlled trial. Exp Ther Med 2016;12(3):1889-1895. DOI: 10.3892/etm.2016.3515.
525	8.	Garland C, Comstock G, Garland F, Helsing K, Shaw E, Gorham E. Serum 25(OH)D and
526		colon cancer: Eight-year prospective study. Lancet 1989;2:1176-1178.
527	9.	Garland F, Garland C, Gorham E, Young J. Geographic variation in breast cancer
528		mortality in the United States: A hypothesis involving exposure to solar radiation. Prev
529		Med 1990;19:614-622.
530	10.	Keum N, Lee DH, Greenwood DC, Manson JE, Giovannucci E. Vitamin D supplementation
531		and total cancer incidence and mortality: a meta-analysis of randomized controlled
532		trials. Annals of oncology : official journal of the European Society for Medical Oncology
533		/ ESMO 2019;30(5):733-743. DOI: 10.1093/annonc/mdz059.
534	11.	Hollis BW, Marshall DT, Savage SJ, Garrett-Mayer E, Kindy MS, Gattoni-Celli S. Vitamin
535		D(3) supplementation, low-risk prostate cancer, and health disparities. The Journal of
536		steroid biochemistry and molecular biology 2012 (In Eng). DOI:
537		10.1016/j.jsbmb.2012.11.012.
538	12.	Zhang X, Tu W, Manson JE, et al. Racial/Ethnic Differences in 25-Hydroxy Vitamin D and
539		Parathyroid Hormone Levels and Cardiovascular Disease Risk Among Postmenopausal
540		Women. J Am Heart Assoc 2019;8(4):e011021. DOI: 10.1161/JAHA.118.011021.
541	13.	Grant WB. Vitamin D Status May Help Explain Racial Disparities in Pancreatic Cancer
542		Incidence and Mortality in the United States. Clinical gastroenterology and hepatology :

543		the official clinical practice journal of the American Gastroenterological Association
544		2020. DOI: 10.1016/j.cgh.2019.12.033.
545	14.	Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention
546		of vitamin D deficiency: an Endocrine Society clinical practice guideline. The Journal of
547		clinical endocrinology and metabolism 2011;96(7):1911-30. DOI: 10.1210/jc.2011-0385.
548	15.	Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL. Vitamin D supplementation
549		during pregnancy: Double-blind, randomized clinical trial of safety and effectiveness.
550		Journal of Bone and Mineral Research 2011;26(10):2341-2357. DOI: 10.1002/jbmr.463.
551	16.	Mirzakhani H, Litonjua AA, McElrath TF, et al. Early pregnancy vitamin D status and risk
552		of preeclampsia. The Journal of clinical investigation 2016;126(12):4702-4715. DOI:
553		10.1172/JCI89031.
554	17.	Bergman P, Norlin AC, Hansen S, et al. Vitamin D3 supplementation in patients with
555		frequent respiratory tract infections: a randomised and double-blind intervention study.
556		BMJ open 2012;2(6) (In eng). DOI: 10.1136/bmjopen-2012-001663.
557	18.	Olliver M, Spelmink L, Hiew J, Meyer-Hoffert U, Henriques-Normark B, Bergman P.
558		Immunomodulatory Effects of Vitamin D on Innate and Adaptive Immune Responses to
559		Streptococcus pneumoniae. The Journal of infectious diseases 2013 (In Eng). DOI:
560		10.1093/infdis/jit355.
561	19.	Bergman P, Lindh AU, Bjorkhem-Bergman L, Lindh JD. Vitamin D and Respiratory Tract
562		Infections: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
563		PloS one 2013;8(6):e65835. (In Eng). DOI: 10.1371/journal.pone.0065835.

564 Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute 20. 565 respiratory tract infections: systematic review and meta-analysis of individual 566 participant data. BMJ 2017;356:i6583. DOI: 10.1136/bmj.i6583. McNally JD, Leis K, Matheson LA, Karuananyake C, Sankaran K, Rosenberg AM. Vitamin D 567 21. 568 deficiency in young children with severe acute lower respiratory infection. Pediatr Pulmonol 2009;44(10):981-8. (In eng) 569 570 (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit 571 ation&list uids=19746437). 572 Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized trial of 22. 573 vitamin D supplementation to prevent seasonal influenza A in schoolchildren. The American journal of clinical nutrition 2010;91(5):1255-1260. DOI: 574 575 10.3945/ajcn.2009.29094. 576 23. Grant WB. The roles of vitamin D, temperature, and viral infections in seasonal risk of acquiring asthma. Am J Respir Crit Care Med 2009;179(11):1072; author reply 1072-3. 577 DOI: 10.1164/ajrccm.179.11.1072a. 578 579 Bryson KJ, Nash AA, Norval M. Does vitamin D protect against respiratory viral 24. 580 infections? Epidemiol Infect 2014;142(9):1789-801. DOI: 10.1017/S0950268814000193. 581 25. Young GA, Jr., Underdahl NR, Carpenter LE. Vitamin D intake and susceptibility of mice 582 to experimental swine influenza virus infection. Proc Soc Exp Biol Med 1949;72(3):695-7. 583 (In eng) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit 584 ation&list uids=15400837). 585

586 26. Green M. Cod liver oil and tuberculosis. BMJ 2011;343:d7505. DOI: 10.1136/bmj.d7505. 587 27. Johnson DD, Wagner CL, Hulsey TC, McNeil RB, Ebeling M, Hollis BW. Vitamin D 588 Deficiency and Insufficiency is Common during Pregnancy. American journal of 589 perinatology 2010;204(Jul 16):6:556.e1–556.e4. (In Eng). DOI: 590 10.1016/j.ajog.2011.03.022. 591 Hamilton SA, McNeil R, Hollis BW, et al. Profound Vitamin D Deficiency in a Diverse 28. 592 Group of Women during Pregnancy Living in a Sun-Rich Environment at Latitude 32 593 degrees N. International journal of endocrinology 2010;2010:917428. (In eng). DOI: 594 10.1155/2010/917428. 595 MacLaughlin JA, Holick MF. Aging decreases the capacity of the skin to produce vitamin 29. D₃. The Journal of clinical investigation 1985;76:1536-1538. 596 597 30. Wang TY, Wang HW, Jiang MY. Prevalence of vitamin D deficiency and associated risk of 598 all-cause and cause-specific mortality among middle-aged and older adults in the United States. Front Nutr 2023;10:1163737. DOI: 10.3389/fnut.2023.1163737. 599 600 31. Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients 601 Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 - COVID-NET, 14 602 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep 2020;69(15):458-464. DOI: 603 10.15585/mmwr.mm6915e3. 604 32. Li A, Hannah T, Durbin J, et al. Multivariate Analysis of Factors Affecting COVID-19 Case 605 and Death Rate in U.S. Counties: The Significant Effects of Black Race and Temperature. 606 MedRxiv 2020;2020.04.17.20069708. DOI: 10.1101/2020.04.17.20069708.

33. Charoenngam N, Holick MF. Immunologic Effects of Vitamin D on Human Health and 607 608 Disease. Nutrients 2020;12(7). DOI: 10.3390/nu12072097. 609 McFee DRB. COVID-19 Laboratory Testing/CDC Guidelines. Dis Mon 2020;66(9):101067. 34. DOI: 10.1016/j.disamonth.2020.101067. 610 611 35. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of 612 ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding 613 SARS pathogenesis. J Pathol 2004;203(2):631-7. DOI: 10.1002/path.1570. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the 614 36. 615 receptor ACE2 expression reveals the potential risk of different human organs 616 vulnerable to 2019-nCoV infection. Front Med 2020. DOI: 10.1007/s11684-020-0754-0. 617 37. La Vignera S, Cannarella R, Condorelli RA, Torre F, Aversa A, Calogero AE. Sex-Specific 618 SARS-CoV-2 Mortality: Among Hormone-Modulated ACE2 Expression, Risk of Venous 619 Thromboembolism and Hypovitaminosis D. International Journal of Molecular Sciences 2020;21(8):2948. DOI: 10.3390/ijms21082948. 620 621 38. Hansdottir S, Monick MM. Vitamin D effects on lung immunity and respiratory diseases. 622 Vitam Horm 2011;86:217-37. DOI: 10.1016/B978-0-12-386960-9.00009-5. 623 Foong RE, Bosco A, Jones AC, et al. The effects of in utero vitamin D deficiency on airway 39. 624 smooth muscle mass and lung function. Am J Respir Cell Mol Biol 2015;53(5):664-75. 625 DOI: 10.1165/rcmb.2014-0356OC. 626 Meng J, Li X, Liu W, et al. The role of vitamin D in the prevention and treatment of SARS-40. CoV-2 infection: A meta-analysis of randomized controlled trials. Clin Nutr 627 628 2023;42(11):2198-2206. DOI: 10.1016/j.clnu.2023.09.008.

Table 1. Sociodemographics and Clinical Characteristics of Cohort by COVID-19 Status at Baseline^c

Characteristic	All	COVID-19	COVID-19	p-value
	N=131	Positive N=44 (33.6%)	Negative N=87 (66.4%)	*p<0.05
Age in Years, Mean ± SD	64.3 ± 9.3	65.9 ± 11.3	63.5 ± 7.9	0.2
(range)	(50.6-96.0)	(52.0-96.0)	(50.6-80.0)	
Ages				0.6
≥ 65 years, N (%)	61 (46.6%)	22 (36.1%)	39 (63.9%)	
< 65 years, N (%)	70 (53.4%)	22 (31.4%)	48 (68.6%)	
Sex			\$	0.06
Males, N (%)	48 (36.6%)	21 (43.8%)	27 (56.3%)	
Females, N (%)	83 (63.4%)	23 (27.7%)	60 (72.3%)	
Marital Status		. O,		0.9
Married, N (%)	93 (71.0%)	31 (33.3%)	62 (66.7%)	
Not Married, N (%)	38 (29.0%)	13 (34.2%)	25 (65.8%)	
Insurance Status				0.9
Private, N (%)	80 (60.9%)	27 (33.8%)	53 (66.3%)	
Medicaid/Medicare/Self-Pay, N (%)	51 (38.9%)	17 (33.3%)	34 (66.7%)	
Body Mass Index (BMI)	5			0.05
≥ 30, N (%)	56 (42.8%)	24 (42.9%)	32 (57.1%)	
BMI <30, N (%)	75 (57.3%)	20 (26.7%)	55 (73.3%)	
Race/Ethnicity				<0.0001*
Black, N (%)	26 (19.9%)	17 (65.4%)	9 (34.6%)	
Non-Black, N (%)	105 (80.2%)	27 (25.7%)	78 (74.3%)	
Baseline 25(OH)D, ng/mL	39.9 ± 20.5	24.6 ± 16.4	47.7 ± 17.8	<0.0001*
(range)	(4.0-105.0)	(4.0-89.0)	(9.0-105.0)	

 $^{^\}xi$ Within the ALL column, percentages are the % of the total within that column. For the COVID-19 Positive and Negative Columns, percentages are read across the columns comparing COVID-19 Positive and Negative Participants for each attribute or characteristic.

Table 2. Sociodemographic and Clinical Characteristics of Cohort in Relation to Vitamin D Status as Measured by Total Circulating 25(OH)D Concentration (ng/mL)

Sociodemographic and Clinical Characteristic	25(OH)D (ng/mL), Mean ± SD	p-value *p<0.05
	(range)	•
Age		0.1
>CF (N=C1)	36.9 ± 18.8	
≥65 years (N=61)	(4.0-82.0)	
	(/	
<65 years (N=70)	42.6 ± 21.6	
105 years (11-70)	(8.0-105.0)	
Sex		0.002*
	C	
Males (N=48)	$\textbf{32.6} \pm \textbf{15.8}$	
,	(4.0-64.0)	
Females (N=83)	44.2 ± 21.7	
Dana /Fabrainia	(8.9-105.0)	0.0001*
Race/Ethnicity		0.0001*
Black American (N=26)	26.4 ± 19.0	
Black Affiericali (N=20)	(4.0-70.0)	
	(1 1 1)	
Non-Black American (N=108)	43.3 ± 19.5	
Non Black American (N=100)	(10.9-105.0)	
Marital Status		0.4
Married (N=93)	40.4 ± 20.3	
	(8.9-105.0)	
Non-Married (N=38)	38.2 ± 19.9	
	(4.0-89.0)	
Insurance Status)		0.32
Private Insurance (N=80)	41.0 ± 20.9	
	(4.0-105.0)	
	37.7 ± 20.7	
Medicaid/Medicare/Self Paying (N=52	(8.0-82.0)	
	(0.0004
Body Mass Index		0.004*
DM1 > 20 /m - FC)	34.2 ±16.8	
BMI ≥30 (n=56)	(4.0-70.0)	
	(
DMI ~20 (NI=75)	44.2 ± 22.0	
BMI <30 (N=75)	(8.9-105.0)	

Journal Pre-proof

Table 3. COVID-19 Positive vs. COVID-19 Negative Participants by Sociodemographic and Clinical **Characteristics with Odds Ratios and Relative Risk**

Characteristic	All	COVID-19	COVID-19	p-value (*p<0.05)
	N=131	Positive	Negative	Odds Ratio (95% CI) ¹
		N=44 (33.6%)	N=87 (66.4%)	or
				Relative Risk (95% CI)
Age in Years, Mean ± SD	64.3 ± 9.3	65.9 ± 11.3	63.5 ± 7.9	0.2
(range)	(50.6-96.0)	(52.0-96.0)	(50.6-80.0)	OR (95% CI)
				1.0 (0.99-1.07)
Ages				0.6
≥ 65 years, N (%)	61 (46.6%)	22 (36.1%)	39 (63.9%)	RR (95% CI)
< 65 years, N (%)	70 (53.4%)	22 (31.4%)	48 (68.6%)	1.1 (0.70-1.86)
Sex				0.06
Males, N (%)	48 (36.6%)	21 (43.8%)	27 (56.3%)	RR (95% CI)
Females, N (%)	83 (63.4%)	23 (27.7%)	60 (72.3%)	1.6 (0.98-2.53)
Marital Status				0.9
Married, N (%)	93 (71.0%)	31 (33.3%)	62 (66.7%)	RR (95% CI)
Not Married, N (%)	38 (29.0%)	13 (34.2%)	25 (65.8%)	0.9 (0.58-1.95)
Insurance Status			/	0.9
Private, N (%)	80 (60.9%)	27 (33.8%)	53 (66.3%)	RR (95% CI)
Medicaid/Medicare/Self-	51 (38.9%)	17 (33.3%)	34 (66.7%)	1.0 (0.62-1.66)
Pay, N (%)				
Body Mass Index (BMI)				0.05
≥ 30, N (%)	56 (42.8%)	24 (42.9%)	32 (57.1%)	RR (95% CI)
<30, N (%)	75 (57.3%)	20 (26.7%)	55 (73.3%)	1.6 (0.99-2.60)
Race/Ethnicity				<0.0001*
Black, N (%)	26 (19.9%)	17 (65.4%)	9 (34.6%)	RR (95% CI)
Non-Black, N (%)	105	27 (25.7%)	78 (74.3%)	2.5 (1.66-3.90)
	(80.2%)			
Baseline 25(OH)D, ng/mL	9			<0.0001*
(range)	39.9 ±	$\textbf{24.6} \pm \textbf{16.4}$	47.7 ± 17.8	OR (95% CI)
	20.5	(4.0-89.0)	(9.0-105.0)	0.9 (0.88-0.94)
	(4.0-105.0)			
25(OH)D Concentration				
(ng/mL)				<0.0001*
<20, N (%)	25 (19.1%)	22 (88.0%)	3 (12.0%)	RR (95% CI)
≥20, N (%)	106	22 (20.8%)	84 (79.3%)	4.2 (2.84-6.32)
	(80.9%)			
25(OH)D Concentration				
(ng/mL)				<0.0001*
< 40, N (%)	72 (55.0%)	38 (52.8%)	34 (47.2%)	RR (95% CI)
≥40, N (%)	59 (45.0%)	6 (10.2%)	53 (89.8%)	5.2 (2.36-11.43)

¹OR = Odds Ratio for continuous variables RR = Relative Risk for categorical variables

Chi-square analysis was used for categorical variables to assess associations and calculate relative risk for being Covid-Positive. Bivariate logistic regression was used for the continuous independent variable of 25(OH)D concentration to assess association with Covid-Positive and to calculate odds ratios.

Table 4a. Logistic Regression Model in Predicting COVID-Positive Status with 25(OH)D Concentration

Independent Variable	Estimate	Standard Error (SE)	Wald Chi Square	Odds Ratio Estimates (OR)	95% Confidence Interval (CI)	p-value *p<0.05
Age ≥ 65 years	0.35	0.60	0.34	1.42	0.44-4.57	0.56
Male	0.24	0.49	0.24	1.28	0.49-3.36	0.62
Black American	0.92	0.61	2.27	2.52	0.76-8.39	0.13
Unmarried	-0.13	0.54	0.06	0.87	0.30-2.53	0.80
Medicaid/Medicare/Self-Pay	-0.59	0.62	0.94	0.56	0.17-1.84	0.33
BMI ≥ 30	0.35	0.50	0.50	1.42	0.54-3.75	0.48
25(OH)D Concentration	-0.08	0.018	20.95	0.92	0.89-0.95	<0.0001*

SE = standard error

OR = odds ratio

95% CI = 95% Wald Confidence Limits

Table 4b. Logistic Regression Model in Predicting COVID-Positive Status with 25(OH)D <20 ng/mL

Independent Variable	Estimate	Standard Error (SE)	Wald Chi Square	Odds Ratio Estimates (OR)	95% Confidence Interval (CI)	p-value *p<0.05
Age ≥ 65 years	0.62	0.59	1.12	1.86	0.587-5.912	0.29
Male	0.61	0.50	1.49	1.84	0.691-4.886	0.22
Black American	1.22	0.62	3.90	3.37	1.009-11.261	0.05
Unmarried	-0.11	0.56	0.04	0.89	0.30-2.69	0.84
Medicaid/Medicare/Self	-1.20	0.64	3.57	0.30	0.09-1.05	0.06
BMI ≥ 30	0.55	0.50	1.24	1.74	0.657-4.598	0.27
25(OH)D <20 ng/mL	3.21	0.71	20.26	24.87	6.137-100.821	<.0001*

SE = standard error

OR = odds ratio

95% CI = 95% Wald Confidence Limits

Table 5a. COVID Positive — Hospitalization at Time of Study Entry

Characteristic	All	Hospitalized	Not	p-value (*p<0.05)
	N=44		Hospitalized	Relative Risk (RR)
		N=35 (79.6%)	N=9 (20.5%)	Odds Ratio (OR)
				(95% CI)
Ages				0.02* Fisher's Exact
≥ 65 years, N (%)	22 (50.0%)	21 (95.5%)	1 (4.6%)	1.5 (1.08-2.08) RR
< 65 years, N (%)	22 (50.0%)	14 (63.6%)	8 (36.4%)	12.0 (1.34-106.79) OR
Gender				0.02* Fisher's Exact
Males, N (%)	21 (47.7%)	20 (95.2%)	1 (4.8%)	1.5 (1.07-2.00) RR
Females, N	23 (52.3%)	15 (65.2%)	8 (34.8%)	10.7 (1.20-94.73) OR
Marital Status				1.0 Fisher's Exact
Married, N (%)	31 (70.5%)	25 (80.7%)	6 (19.4%)	1.0 (0.74-1.48) RR
Not Married, N (%)	13 (29.5%)	10 (76.9%)	3 (23.1%)	1.3 (0.26- 6.00) OR
Insurance Status				0.1 Fisher's Exact
Private, N (%)	27 (61.4%)	19 (70.4%)	8 (29.6%)	0.7 (0.57-0.98) RR
Medicaid/Medicare/self-pay, N (%)	17 (38.6%)	16 (94.1%)	1 (5.9%)	0.1 (0.02-1.32) OR
Body Mass Index (BMI)				1.0 Fisher's Exact
BMI ≥ 30, N (%)	24 (54.6%)	19 (79.2%)	5 (20.8%)	0.9 (0.73-1.34) RR
BMI <30, N (%)	20 (45.4%)	16 (80.0%)	4 (20.0%)	0.9 (0.22-4.15) OR
Race/Ethnicity		x (C)		1.0 Fisher's Exact
Black, N (%)	17 (38.6%)	14 (82.4%)	3 (17.6%)	1.1 (0.79-1.43) RR
Non-Black, N (%)	27 (61.4%)	21 (77.8%)	6 (22.2%)	1.3 (0.29-6.23) OR
25(OH)D < 20 ng/mL				0.1 Fisher's Exact
<20, N (%)	22 (50.0%)	20 (90.9%)	2 (9.1%)	1.3 (0.97-1.83) RR
≥20, N (%)	22 (50.0%)	15 (68.2%)	7 (31.8%)	4.7 (0.80-25.75) OR
25(OH)D < 40 ng/mL				0.0006* Fisher's
< 40, N (%)	38 (86.4%)	34 (89.5%)	4 (10.5%)	Exact
≥40, N (%)	6 (13.6%)	1 (16.7%)	5 (83.3%)	5.4 (0.89-32.23) RR
				42.5 (3.90-461.01) OR
	N	N	N	p-value (*p<0.05)
	Mean ± STD	Mean \pm STD	Mean \pm STD	Odds Ratio (OR) (95%
	range	range	range	CI)
25(OH)D concentration	44	35	9	0.03* Student's T-
(ng/mL)	24.6 ± 16.4	20.2 ± 9.5	41.7 ± 25.5	test
	4.0-89.0	4.0-41.4	10.9-89.0	0.008* regression
				0.9 (0.86-0.98) OR

Multivariate Logistic Regression

Independent Variable	Estimate	Standard Error (SE)	Wald Chi Square	Odds Ratio Estimates (OR)	95% Confidence Interval (CI)	p-value *p<0.05
Age ≥ 65 years	0.96	1.71	0.31	2.61	0.09-74.74	0.58
Male	2.62	1.41	3.46	13.68	0.87-215.71	0.06
Black American	-1.57	1.44	1.19	0.21	0.01-3.49	0.28
Unmarried	-1.94	1.66	1.36	0.14	0.01-3.75	0.24
Medicaid/Medicare/Self	4.09	2.56	2.55	59.54	0.12-80.59	0.11
BMI ≥ 30	1.13	1.66	0.46	3.10	0.12-80.59	0.50
25(OH)D Concentration	-0.13	0.06	4.72	0.88	0.78-0.99	0.03*

In chi square analysis, factors independently associated with nospitalization at time of study entry included age ≥65 years, male sex, and 25(OH)D concentrations categorized at cutpoints of 20 and 40 ng/mL. Additionally, based on Student's t-test, 25(OH)D concentration was found to be associated with hospitalization. In bivariate logistic regression, a significant association was observed between hospitalization and 25(OH)D concentration (p=0.008, 95% CI 0.86-0.98). Subsequently, a multivariate logistic regression analysis was performed to assess factors associated with hospitalization, including age ≥65, sex, race/ethnicity, marital status, insurance status, BMI, and 25(OH)D concentration. The results demonstrated that only 25(OH)D concentration remained a significant independent predictor of hospitalization (estimate: 0.9, p-value=0.03, odds ratio: 0.9, 95% CI: 0.78-0.99).

Table 5b. COVID Positive – Pneumonia at time of Study Entry

Characteristic	All	Pneumonia	No	p-value (*p<0.05)
	N=44		Pneumonia	Relative Risk (RR)
		N=31	N=13	Odds Ratio (OR)
		(70.5%)	(29.6%)	(95% CI)
Ages				0.2 Fisher's Exact
≥ 65 years, N (%)	22 (50.0%)	18 (81.8%)	4 (18.2%)	1.4 (0.93-2.06) RR
< 65 years, N (%)	22 (50.0%)	13 (59.1%)	9 (40.9%)	3.1(0.79-12.3) OR
Gender				0.049* Fisher's Exact
Males, N (%)	21 (47.7%)	18 (85.7%)	3 (14.3%)	1.5 (1.02-2.26) RR
Females, N	23 (52.3%)	13 (56.5%)	10 (43.5%)	4.6 (1.06-20.16) OR
Marital Status				0.4 Student's T-test
Married, N (%)	31 (70.4%)	23 (74.2%)	8 (25.8%)	1.2 (0.70-1.94) RR
Not Married, N (%)	13 (29.6%)	8 (61.5%)	5 (38.5%)	1.8 (0.40-7.12) OR
Insurance Status				0.7 Fisher's Exact
Private, N (%)	27 (61.4%)	18 (66.7%)	9 (33.3%)	0.9 (0.60-1.27) RR
Medicaid/Medicare/self-pay, N (%)	17 (38.6%)	13 (76.5%)	4 (23.5%)	0.6 (0.16-2.44) OR
Body Mass Index (BMI)				0.9 Chi-Square
BMI ≥ 30, N (%)	24 (54.6%)	17 (70.8%)	7 (29.2%)	1.0 (0.69-1.49) RR
BMI <30	20 (45.4%)	14 (70.0%)	6 (30.0%)	1.0 (0.28-3.82) OR
Race/Ethnicity		()		0.9 Chi-Square
Black, N (%)	17 (38.6%)	12 (70.6%)	5 (29.4%)	1.0 (0.68-1.49) RR
Non-Black, N (%)	27 (61.4%)	19 (70.4%)	8 (29.6%)	1.0 (0.27-3.82) OR
25(OH)D < 20 ng/mL				0.3 Chi-Square
<20, N (%)	22 (50.0%)	17 (77.3%)	5 (22.73%)	1.2 (0.82-1.79) RR
≥20, N (%)	22 (50.0%)	14 (63.6%)	8 (36.4%)	1.9 (0.52-7.29) OR
25(OH)D < 40 ng/mL				0.006* Fisher's Exact
< 40, N (%)	38 (86.4%)	30 (78.9%)	8 (21.1%)	4.7 (0.79-28.56) RR
≥40, N (%)	6 (13.6%)	1 (16.7%)	5 (83.3%)	18.8 (1.91-184.10)
				OR
	N	N	N	p-value (*p<0.05)
	Mean \pm STD	Mean ± STD	Mean ± STD	Odds Ratio (OR)
	range	range	range	(95% CI)
25(OH)D concentration	44	31	13	0.07 Student's T-test
(ng/mL)	$\textbf{24.6} \pm \textbf{16.4}$	20.5 ± 9.7	34.3 ± 24.2	0.03* regression ¹
	4.0-89.0	4.0-41.4	10.9-89.0	0.9 (0.90-0.99) OR

Multivariate Logistic Regression

Independent Variable	Estimate	Standard Error (SE)	Wald Chi Square	Odds Ratio Estimates (OR)	95% Confidence Interval (CI)	p-value *p<0.05
Age ≥ 65 years	0.29	1.04	0.08	1.33	0.17-10.24	0.78
Male	1.42	0.89	2.56	4.12	0.73-23.40	0.11
Black American	-0.84	0.93	0.82	0.43	0.07-2.67	0.37
Unmarried	-1.53	1.09	1.95	0.22	0.03-1.85	0.16
Medicaid/Medicare/Self	0.24	1.04	0.05	1.27	0.17-9.80	0.82
BMI ≥ 30	1.19	1.04	1.30	3.27	0.43-25.02	0.25
25(OH)D Concentration	-0.08	0.04	3.69	0.93	0.86-1.002	0.05

In chi-square analysis, male sex and 25(OH)D concentration below 40 ng/mL were identified as independent factors associated with COVID pneumonia. Furthermore, bivariate logistic regression revealed a significant association between pneumonia and 25(OH)D concentration (p=0.03; 95% CI: 0.90-0.99). Upon conducting multivariate logistic regression analysis adjusting for age ≥65, sex, race, marital status, insurance, BMI, and 25(OH)D concentration, the significance of 25(OH)D concentration was attenuated (estimate: -0.08, p-value=0.05, odds ratio: 0.9, 95% confidence interval: 0.86-1.002).

Journal Pre-proof

Table 5c. COVID Positive – Intensive Care Unit (ICU) Admission during Hospitalization

Characteristic	All	ICU	No ICU	p-value (*p<0.05)
	N=44	N=19	N=25	Relative Risk (RR)
		(43.2%)	(56.8%)	Odds Ratio (OR)
				(95% CI)
Ages				0.0002* Fisher's Exact
≥ 65 years, N (%)	22 (50.0%)	16 (72.7%)	6 (27.3%)	5.3 (1.81-15.74) RR
< 65 years, N (%)	22 (50.0%)	3 (13.6%)	19 (86.4%)	16.9 (3.63-78.56) OR
Gender				0.07 Chi-Square
Males, N (%)	21 (47.7%)	12 (57.1%)	9 (42.9%)	1.9 (0.91-3.86) RR
Females, N	23 (52.3%)	7 (30.4%)	16 (69.6%)	3.0 (0.88-10.52) OR
Marital Status				0.3 Fisher's Exact
Married, N (%)	31 (70.4%)	15 (48.4%)	16 (51.6%)	1.5 (0.64-3.84) RR
Not Married, N (%)	13 (29.6%)	4 (30.8%)	9 (69.2%)	2.1 (0.54-8.32) OR
Insurance Status				0.004* Chi-Square
Private, N (%)	27 (61.4%)	7 (25.9%)	20 (74.1%)	0.4 (0.18-0.75) RR
Medicaid/Medicare/self-pay, N (%)	17 (38.6%)	12 (70.6%)	5 (29.4%)	0.1 (0.04-0.56) OR
Body Mass Index (BMI)				0.1 Chi-Square
BMI ≥ 30, N (%)	24 (54.6%)	8 (33.3%)	16 (66.7%)	0.6 (0.30-1.21) RR
BMI <30	20 (45.4%)	11 (55.0%)	9 (45.0%)	0.4 (0.12-1.39) OR
Race/Ethnicity		.r (C)		0.7 Chi-Square
Black	17 (38.6%)	8 (47.1%)	9 (52.9%)	1.2 (0.59-2.28) RR
Non-Black	27 (61.4%)	11 (40.7%)	16 (59.36%)	1.3 (0.38-4.39) OR
25(OH)D < 20 ng/mL				0.03* Chi-Square
<20, N (%)	22 (50.0%)	13 (59.1%)	9 (40.9%)	2.1 (1.00-4.66) RR
≥20, N (%)	22 (50.0%)	6 (27.3%)	16 (72.7%)	3.9 (1.09-13.66) OR
25(OH)D < 40 ng/mL				0.03* Fisher's Exact
< 40, N (%)	38 (86.4%)	19 (50.0%)	19 (50.0%)	N/A RR
≥40, N (%)	6 (13.6%)	0 (0.0%)	6 (100.0%)	N/A OR
	N	N	N	p-value (*p<0.05)
	Mean ±	$Mean \pm STD$	Mean ± STD	Odds Ratio (OR) (95%
	STD	range	range	CI)
	range	_		
25(OH)D concentration	44	19	25	0.04* Student's T-test
(ng/mL)	24.6 ±	$\textbf{19.3} \pm \textbf{8.6}$	28.6 ± 19.7	0.08 regression ¹
	16.4	8.9-35.0	4.0-89.0	0.9 (0.91-1.01) OR
	4.0-89.0			

Multivariate Logistic Regression

Independent Variable	Estimate	Standard Error (SE)	Wald Chi Square	Odds Ratio Estimates (OR)	95% Confidence Interval (CI)	p-value *p<0.05
Age ≥ 65 years	1.91	0.95	4.05	6.73	1.05-43.00	0.04*
Male	1.34	0.93	2.05	3.80	0.61-23.65	0.15
Black American	-0.68	0.98	0.48	0.51	0.08-3.45	0.49
Unmarried	- 0.57	1.06	0.29	0.56	0.07-4.52	0.59
Medicaid/Medicare/Self	1.89	1.05	3.23	6.63	0.84-52.24	0.07
BMI ≥ 30	-0.21	1.00	0.05	0.81	0.11-5.73	0.83
25(OH)D Concentration	-0.02	0.04	0.35	0.98	0.91-1.06	0.55

Journal Pre-proof
In chi-square analysis, factors independently associated with ICU admission included age ≥65 years, Medicaid/Medicare/self-pay, and 25(OH)D concentrations categorized at cutpoints of 20 and 40 ng/mL. Additionally, based on Student's t-test, 25(OH)D concentration was found to be associated with ICU admission. Subsequently, a multivariate logistic regression analysis was conducted to evaluate factors associated with ICU admission, encompassing age ≥65 years, sex, race/ethnicity, marital status, insurance, BMI, and 25(OH)D concentration. Only age ≥65 years and not 25(OH)D concentration (estimate: -0.0232, p-value: 0.08, odds ratio: 0.9, 95% CI: 0.91-1.06), exhibited a statistically significant, independent association with ICU admission during hospitalization.

Journal Pre-proof

Table 5d. COVID Positive – Death during Hospitalization

Characteristic	All	Death	No Death	p-value (*p<0.05)
	N=44	N=11	N=33	Relative Risk (RR)
		(25.0%)	(75.0%)	Odds Ratio (OR)
				(95% CI)
Ages				0.0002* Fisher's Exact
≥ 65 years, N (%)	22 (50.0%)	11 (50.0%)	11 (50.0%)	N/A RR
< 65 years, N (%)	22 (50.0%)	0 (0.0%)	22 (100.0%)	N/A OR
Gender				0.3 Fisher's Exact
Males, N (%)	21 (47.7%)	7 (33.3%)	14 (66.7%)	1.9 (0.65-5.63) RR
Females, N	23 (52.3%)	4 (17.4%)	19 (82.6%)	2.4 (0.58-9.72) OR
Marital Status				1.0 Fisher's Exact
Married, N (%)	31 (70.4%)	8 (25.8%)	23 (74.2%)	1.1 (0.35-3.56) RR
Not Married, N (%)	13 (29.6%)	3 (23.1%)	10 (76.9%)	1.2 (0.25-5.30) OR
Insurance Status				0.01* Fisher's Exact
Private, N (%)	27 (61.4%)	3 (11.1%)	24 (88.9%)	0.2 (0.07-0.77) RR
Medicaid/Medicare/self-pay, N (%)	17 (38.6%)	8 (47.1%)	9 (52.9%)	0.1 (0.03-0.65) OR
Body Mass Index (BMI)				1.0 Chi-Square
BMI ≥ 30, N (%)	24 (54.6%)	6 (25.0%)	18 (75.0%)	1.0 (0.36-2.79) RR
BMI <30, N (%)	20 (45.5%)	5 (25.0%)	15 (75.0%)	1.0 (0.25-3.94) OR
Race/Ethnicity		x (C)		0.2 Chi-Square
Black	17 (38.6%)	6 (35.3%)	11 (64.7%)	1.9 (0.69-5.29) RR
Non-Black	27 (61.4%)	5 (18.5%)	22 (81.5%)	2.4 (0.60-9.64) OR
25(OH)D < 20 ng/mL				0.2 Fisher's Exact
<20, N (%)	22 (50.0%)	8 (36.4%)	14 (63.6%)	2.7 (0.81-8.75) RR
≥20, N (%)	22 (50.0%)	3 (13.6%)	19 (86.4%)	3.6 (0.81-16.15) OR
25(OH)D < 40 ng/mL				0.3 Fisher's Exact
< 40, N (%)	38 (86.4%)	11 (28.9%)	27 (71.1%)	N/A RR
≥40, N (%)	6 (13.6%)	0 (0.0%)	6 (100.0%)	N/A OR
	N	N	N	p-value (*p<0.05)
	$Mean \pm STD$	Mean ±	Mean ± STD	Odds Ratio (OR) (95%
	range	STD	range	CI)
		range		
25(OH)D concentration	44	11	33	0.05 Student's T-test
(ng/mL)	24.6 ± 16.4	18.6 ± 8.3	26.6 ± 18.2	0.2 Regression
	4.0-89.0	8.9-34.7	4.0-89.0	0.9 (0.90-1.02) OR

Multivariate Logistic Regression

Multivariate Logistic Re		ı				
Independent Variable	Estimate	Standard	Standard Wald Chi Odds Ratio 95% Co		95% Confidence	p-value
		Error (SE)	Square	Estimates (OR)	Interval (CI)	*p<0.05
Age ≥ 65 years	14.91	163.10	0.01	>999.99	<0.001-999.99	0.93
Male	0.19	1.28	0.02	1.21	0.10-14.84	0.88
Black American	1.16	1.29	0.82	3.20	0.26-39.89	0.37
Unmarried	1.63	2.01	0.65	5.08	0.10-261.91	0.42
Medicaid/Medicare/Self	1.49	1.42	1.11	4.46	0.28-71.95	0.29
BMI ≥ 30	0.87	1.34	0.40	2.40	0.16-35.49	0.52
25(OH)D Concentration	0.04	0.08	0.23	1.04	0.89-1.21	0.63

In the cni-square analysis, age ≥65 years and Medicaid/seir-pay were identified as factors independently associated with death due to COVID. While no deaths were observed among the 6 participants with a 25(OH)D concentration ≥40 ng/mL, this association did not reach statistical significance (p=0.3). Subsequently, a multivariate logistic regression analysis was conducted to further evaluate factors associated with death due to COVID, including age ≥65, sex, race/ethnicity, marital status, insurance, BMI, and 25(OH)D concentration. None of these factors, including 25(OH)D concentration (estimate +0.04, p-value=0.6, OR 1.04, CI 0.89-1.21), showed a statistically significant association.

Journal Pre-proof

Table 5e. COVID Positive – ICU Admission and/or Death during Hospitalization

Characteristic	All	ICU and/or	No ICU or	p-value (*p<0.05)
	N=44	Death N=19	Death	Odds Ratio (OR) /
		(43.2%)	N=25 (56.8%)	Relative Risk (RR)
				(95% CI)
Ages				0.0002* Fisher's Exact
≥ 65 years, N (%)	22 (50.0%)	16 (72.7%)	6 (27.3%)	5.3 (1.81-15.74) RR
< 65 years, N (%)	22 (50.0%)	3 (13.64%)	19 (86.4%)	16.9 (3.63-78.56) OR
Gender				0.07 Chi-Square
Males, N (%)	21 (47.7%)	12 (57.1%)	9 (42.9%)	1.9 (0.91-3.86) RR
Females, N	23 (52.3%)	7 (30.43%)	16 (69.6%)	3.0 (0.88-10.52) OR
Marital Status				0.3 Fisher's Exact
Married, N (%)	31 (70.4%)	15 (48.4%)	16 (51.6%)	1.6 (0.64-3.84) RR
Not Married, N (%)	13 (29.6%)	4 (30.8%)	9 (69.2%)	2.1 (0.54-8.32) OR
Insurance Status				0.004* Chi-Square
Private, N (%)	27 (61.4%)	7 (25.9%)	20 (74.1%)	0.4 (0.18-0.75) RR
Medicaid/Medicare/self-pay, N (%)	17 (38.6%)	12 (70.6%)	5 (29.4%)	0.1 (0.04-0.56) OR
Body Mass Index (BMI)				0.1 Chi-Square
BMI ≥ 30, N (%)	24 (54.6%)	8 (33.3%)	16 (66.7%)	0.6 (0.30-1.21) RR
BMI <30, N (%)	20 (45.4%)	11 (55.0%)	9 (45.0%)	0.4 (0.12-1.39) OR
Race/Ethnicity		.r (C)		0.7 Chi-Square
Black	17 (38.6%)	8 (47.1%)	9 (52.9%)	1.2 (0.59-2.28) RR
Non-Black	27 (61.4%)	11 (40.7%)	16 (59.3%)	1.3 (0.38-4.39) OR
25(OH)D <20 ng/mL				0.03* Chi-Square
<20, N (%)	22 (50.0%)	13 (59.1%)	9 (40.9%)	2.2 (1.01-4.66) RR
≥20, N (%)	22 (50.0%)	6 (27.3%)	16 (72.7%)	3.9 (1.09-13.66) OR
25(OH)D < 40 ng/mL				0.03* Fisher's Exact
< 40, N (%)	38 (86.4%)	19 (50.0%)	19 (50.0%)	N/A RR
≥40, N (%)	6 (13.6%)	0 (0.0%)	6 (100.0%)	N/A OR
	N	N	N	p-value (*p<0.05)
	Mean ± STD	Mean ± STD	Mean \pm STD	Odds Ratio (OR) (95%
	range	range	range	CI)
25(OH)D concentration	44	19	25	0.04* Student's T-test
(ng/mL)	24.6 <u>+</u> 16.4	19.3 <u>+</u> 8.6	28.6 <u>+</u> 19.7	0.08 regression
	4.0-89.0	8.9-35.0	4.0-89.0	0.9 (0.91-1.01) OR

Multivariate Logistic Regression

Independent Variable	Estimate	Standard Error (SE)	Wald Chi Square	Odds Ratio Estimates (OR)	95% Confidence Interval (CI)	p-value *p<0.05
Age ≥ 65 years	1.91	0.95	4.05	6.73	1.05-43.00	0.04
Male	1.34	0.93	2.05	3.80	0.61-23.65	0.15
Black American	-0.68	0.98	0.48	0.51	0.08-3.45	0.49
Unmarried	- 0.57	1.06	0.29	0.56	0.07-4.52	0.59
Medicaid/Medicare/Self	-1.89	1.05	3.23	6.63	0.84-52.24	0.07
BMI ≥ 30	-0.21	1.00	0.05	0.81	0.11-5.70	0.83
25(OH)D Concentration	-0.02	0.04	0.35	0.98	0.91-1.06	0.55

In chi-square analysis, factors independently associated with ICU admission and/or death due to COVID included age ≥65 years, insurance status, and 25(OH)D concentrations categorized at cutpoints of 20 and 40 ng/mL. Additionally, based on Student's t-test, 25(OH)D concentration was found to be associated with ICU admission and/or death. In multivariate logistic regression, however, modeling age ≥65, sex, race, marital status, insurance, BMI, only age ≥65 years exhibited a statistically significant, independent association with ICU admission and/or death due to COVID.