

Research Article

The Role of Vitamin D in COVID-19 Survival and Prevention: A Meta-analysis

Shamina Begum^{1*} and Hyder Osman Mirghani²

¹Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Saudi Arabia ²Department of Internal Medicine and Endocrine, Faculty of Medicine, University of Tabuk, Saudi Arabia

ORCID:

Shamina Begum Rahman: https://orcid.org/0000-0002-0387-2264

Abstract

Background: COVID-19 is still ongoing with frequently discovered new strains, although vaccines are highly effective for prevention. Literature on vitamin D supplementation in COVID-19 prevention and its effect on survival is scarce. This meta-analysis assessed the role of vitamin D supplementation in COVID-19 prevention and survival.

Methods: Four databases (Web of Science, SCOPUS, PubMed, MEDLINE, and the first 100 articles of Google Scholar) were searched for articles published up to September 2023. The keywords used were COVID-19, mortality, vitamin D supplementation, calcitriol, cholecalciferol, Calcifediol, survival, death, and prevention. Six hundred and seven studies were retrieved, and four hundred and three remained after duplication removal; of them eighty-three full texts were screened, and of them, only sixteen (prospective, randomized controlled trials, and retrospective studies) were included in the final meta-analysis.

Results: Sixteen observational studies including 5905,109 patients and 186,500 events were included. Vitamin D supplementation reduced mortality among patients with COVID-19 patients, odd ratio, 2.31, 95% *CI*, 1.49–3.58; in addition, supplementation was effective in COVID-19 prevention, odd ratio, 1.92, 95% *CI*, 1.01–3.64.

Conclusion: Vitamin D supplementation prevented COVID-19 and increased survival among patients admitted with moderate/severe COVID-19.

Keywords: vitamin D supplementation, COVID-19 prevention, mortality

Corresponding Author: Shamina Begum; email: sbegum@ut.edu.sa

Received: 27 August 2023 Accepted: 10 November 2023 Published: 29 March 2024

Production and Hosting by Knowledge E

© Begum, Mirghani. This article is distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Editor-in-Chief: Prof. Nazik Elmalaika Obaid Seid Ahmed Husain, MD, M.Sc, MHPE, PhD.

□ OPEN ACCESS

1. Introduction

The Covid-19 pandemic has become the most dramatic event of the current century with more than 50 million confirmed cases and 18.2 million deaths during the period January 2020–December 2021 [1]. In the aftermath of COVID-19, a great challenge is still present due to the long-COVID or postacute COVID-19 syndrome. The persistence of symptoms (fatigue, cognitive decline, cough, sputum, headache, chest pain, insomnia, wheeze, taste and smell disturbances) among those who recovered is called post-COVID-19 syndrome or long COVID-19. The prevalence of post-COVID-19 at 90 days is substantial with a great burden on the patients and the healthcare system [2]. Vitamin D performs both skeletal and extra-skeletal functions. and vitamin D receptors are expressed in various tissues. Vitamin D receptors are expressed in the lung, brain, heart, and immune system. Therefore, vitamin D deficiency is associated with immune and inflammatory conditions, chest infections including COVID-19. In addition, vitamin D deficiency is associated with type 1 diabetes, demyelination, and rheumatoid arthritis [3]. Importantly, enzyme 1 alpha-hydroxylase (CYP27B1) is expressed in many organs and can activate vitamin D to exert autocrine or paracrine effects [4]. Evidence regarding the effects of vitamin D deficiency and vitamin D supplementations on COVID-19 is contradicting; some studies found a reduction in severity and mortality [5], while Hastei and colleagues who published a study with large population size and long follow-up study period showed no association of vitamin D deficiency, disease severity, and mortality [6]. A meta-analysis with a high selection bias and heterogeneity showed no difference among patients who took vitamin D and their counterparts without supplementation regarding

COVID-19 outcomes [7]. On the other hand, Naguyen et al. found better outcomes among patients with normal vitamin D levels [8]. The controversy is ongoing; Hu et al. found no association of vitamin D levels on severity, ventilation need, and mortality [9], and Tomaszewska et al. concluded no evidence of vitamin D in treatment of COVID-19 [10]. Moreover, new studies have been published covering this topic - Cannata-Andia et al. [11] showed no benefit of single oral dose of vitamin D on outcomes; Fernandes and colleagues [12] found no benefits of single 200,000 IU vitamin D3 on cytokines, growth factors, and chemokines among hospitalized patients with severe COVID-19, and Annweiler et al. [13] found the benefit of the early high-dose chemokinese vitamin D supplementation among patients with severe COVID-19. Therefore, a meta-analysis on the effects of vitamin D supplementation on COVID-19 mortality and prevention is justifiable. Thus, this meta-analysis aimed to assess the same among patients with COVID-19.

2. Materials and Methods

2.1. Eligibility criteria according to PICOS

We included randomized controlled trials, prospective, and retrospective studies. The studies must assess the effects of vitamin D supplementation on COVID-19 prevention and mortality. Case—control studies, cross-sectional studies, experts' opinions, editorials, case reports, and series were not included.

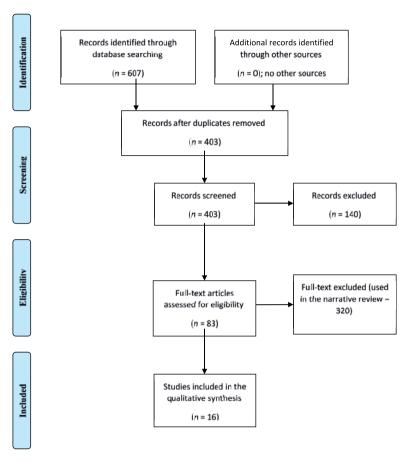


Figure 1: Studies that assessed the effects of vitamin D supplementation on COVID-19 prevention and mortality (the PRISMA Chart).

2.2. Outcome measures

- The effects of vitamin D supplementations on short-term mortality among patients hospitalized with COVID-19.
- 2. The effects of vitamin D supplementations on COVID-19 prevention.

The vitamin D status of the patients with COVID-19 was not limited, both vitamin D deficient and those with normal vitamin D levels were included.

2.2.1. Literature search

Two authors independently searched four databases (Web of Science, SCOPUS, PubMed, MEDLINE, and the first 100 articles of Google

Scholar). The literature search was set from the first published article to those published till September 2023. The keywords used in the four databases were COVID-19, mortality, vitamin D supplementation, calcitriol, cholecalciferol, calcifediol, survival, death, and prevention. Six hundred and seven studies were retrieved, and four hundred and three remained after duplication removal; of them eighty-three full-texts were screened, and of them, only sixteen (prospective and retrospective studies, and randomized controlled studies) were included in the final metaanalysis. A structured checklist was used to gather the author's name, country, year of publication, number of patients in vitamin D supplementation and control group, age and sex of the participants, the study duration, mortality, and comorbidities.

2.2.2. Risk of bias assessment

The Newcastle Ottawa Scale risk of bias assessment, and a modified Cochrane risk of bias were used [14, 15]. All the included studies were of good quality.

2.3. Statistical analysis

RevMan, version 5.4 was used to analyze the dichotomous of 16 studies, 8 studies that assessed the effects of vitamin D on mortality, and 8 cohorts that assessed the effects on COVID-19 prevention. The random effect was used (because of the significant heterogeneity). A P-value of <0.05 was considered significant.

3. Results

In the present meta-analysis, 5905,109 patients were included from 16 studies, and 186,500 events occurred. Eleven studies were from Europe, two were from the USA, two were published in South America, and one was from Asia. Eight studies assessed vitamin D supplementation on COVID-19 mortality [15–23] and eight cohorts investigated the effects of vitamin D supplementation on COVID-19 prevention [24–31]. Vitamin D supplementation reduced mortality among patients with COVID-19 patients, odd ratio, 2.31, 95% CI, 1.49-3.58. The Chi-square was 14.53, and the P-value for the overall effect was 0.0002. A significant heterogeneity was found, l^2 for heterogeneity = 52%, P-value, 0.04, and the standard difference = 7 (Figure 2).

Vitamin D supplementation was effective in COVID-19 prevention, odd ratio, 1.92, 95% *CI*, 1.01–3.64. The Chi-square was 204.46, and the *P*-value for the overall effect was 0.05. Significant

heterogeneity was found, I^2 for heterogeneity = 97%, P-value < 0.001, and the standard difference = 7 (Figure 3). The source of heterogeneity was the pooling of studies with different methodology. The significant heterogeneity in particular regarding Covid-19 prevention limited the current results. The random effect was used.

4. Discussion

The present meta-analysis pooled 16 cohorts and found that vitamin D supplementation was effective in COVID-19 prevention and all-cause mortality reduction, odd ratio, 1.92, 95% CI, 1.01-3.64, and odd ratio, 2.31, 95% CI, 1.49-3.58, respectively. A previous meta-analysis with a limited number of studies [32] found no effects of vitamin D supplementation on primary COVID-19 prevention, in contradiction to the present findings, regarding mortality the authors found a positive effect in line with current findings. The current results were in agreement with a previous meta-analysis [33] which found a reduction in all-cause mortality and primary prevention. The authors pointed out that vitamin D supplementation improved outcomes of COVID-19 only when prescribed after COVID-19 diagnosis. The previous study was limited by pooling both randomized and observational studies and included in their results various studies published by the same authors [34, 17]. Shah and colleagues [35] in their meta-analysis found no difference between vitamin D supplementation, placebo, and usual care. A big limitation of Shah et al. study is that they included only three underpowered studies with a high baseline heterogeneity. Nikniaz et al. [36] included only four studies with a limited number of patients (259) and found lower mortality among the vitamin D supplementation arm. The link between vitamin D

TABLE 1: Vitamin D supplementation and mortality reduction among patients with COVID-19.

Author name and year of publication	Country of the study	Study type (methodology)	Vitamin D supplementation, mortality/total patients	Control group, mortal- ity/total patients
Alcala et al. 2021 [16]	Spain	Retrospective	4/79	90/458
Annweiler et al. 2020 m[17]	France	Retrospective	10/57	5/9
Cangiano et al. 2020 [18]	Italy	Prospective	3/20	39/78
Cereda <i>et al.</i> 2019 [19]	Italy	Prospective	7/18	40/152
Giannini <i>et al.</i> 2021 [20]	Italy	Retrospective	14/36	29/55
Hernández et al. 2021[21]	Spain	Retrospective	2/19	20/197
Ling et al. 2020 [21]	UK	Retrospective	24/148	254/768
Nogués et al. 2021 [23]	Spain	Prospective	36/551	57/379

TABLE 2: Basic characteristics of patients with COVID-19 and vitamin D supplementation.

Author name and year of publication	Age of vitamin D sup- plementation and con- trol groups years		Vitamin D dose in the intervention group	Comorbidities among the study groups	
Alcala <i>et al.</i> 2021 [16]	$69 \pm 15 \text{ vs } 67 \pm 16$	47% vs 40%		More chronic kidney disease in the interventional group	
Annweiler et al. 2020 m[17]	$87.7 \pm 9.3 \text{ vs } 87.4 \pm 7.2$	78.9% vs 66.7%	8.9% vs 66.7% 80,000 IU vitamin D3 is every 2–3 months		
Cangiano et al. 2020 [18]	90.85 vs 89.35	Not reported	Not reported	No differences regarding comorbidities	
Cereda <i>et al.</i> 2019 [19]	68.8 ± 10.6 vs 70.5 ± 13.1	57.9% vs 50.7%	800 IU/day	No differences regarding comorbidities	
Giannini et al. 2021 [20]	$73 \pm 13 \text{ vs } 74 \pm 13$	47% vs 43%	200,000 IU administered in two consecutive days	_	
Hernández et al. 2021 [21]	60 vs 61	63.2% vs 37.6%	-	Diabetes is commoner among control, diabetes more in the intervention	
Ling et al. 2020 [21]	74 years	44.8% females	≥280,000 IU in a period of up to 7 weeks	No differences regarding comorbidities	
Nogués <i>et al.</i> 2021 [23]	61.81 ± 15.5 vs 62.41 ± 17.2	40.9% vs 40.9%	532 ug on day one plus 266 ug on days 3, 7, 15, and 30	No differences regarding comorbidities	

and COVID-19 might be mediated by its effects on inflammation and cytokines release, vitamin D modulates adaptive and innate immunity and might decrease infection [37]. Daily or weekly vitamin D supplementation was shown to reduce respiratory infections, while bolus doses were not effective and daily doses of 400–1000 IU were the most

effective [38, 39]. Modulation of the cytokine storm and activation of ACE receptors by the virus are suggested as mediators of vitamin D COVID-19 prevention and outcomes improvement, in addition to pulmonary epithelial barrier maintenance and epithelial repair [40, 41]. The effects of vitamin D status on COVID-19 severity and outcomes

TABLE 3: Vitamin D supplementation and COVID-19 prevention.

Author name and year of publication	Country of the study		Placebo group, mortality/total number of patients	Results, significance
Brunvoll et al. 2022 [24]	Norway	227/17 278	228/17323	Not significant, P, 0.41
Jolliffe et al. 2022 [25]	UK	100/1515	78/136	Significant, P < 0.001
Karonova et al. 2022 [26]	Russia	10/38	18/40	Not significant
Ma et al. 2019 [27]	USA	49/363	1329/7938	Not significant
Murai et al. 2021 [28]	Brazil	9/119	6/118	Not significant, P, 0.41
Meltzer et al. 2020 [29]	USA	17/89	14/80	Not significant
Oristrell <i>et al.</i> 2021 [30]	Spain	238/8078	183511/5848778	Chronic kidney disease
Villasis-Keever et al. 2022 [31]	Mexico	6/94	24/98	Significant, P < 0.001

TABLE 4: Basic characteristics of patients on vitamin D supplementation for COVID-19 prevention.

Author name and year of publication	Age of vitamin D sup- plementation and con- trol groups years	Females% in vitamin D supplementation and control groups	Vitamin D dose in the intervention group	Comorbidities among the study groups	
Brunvoll <i>et al.</i> 2022 [24]	$45.0 \pm 13.5 \text{ vs } 44.9 \pm 13.4$	64.6% vs 64.6%	10 µg of vitamin D for 6 months	No differences regarding comorbidities	
Jolliffe et al. 2022 [25]	55 vs 60.8	67.6% vs 64.4%	800–3200 IU for 6 months	Comorbidities more among intervention	
Karonova et al. 2022 [26]	35 ± 2 vs 35 ± 2	82% vs 87%		No differences regarding comorbidities	
Ma <i>et al.</i> 2019 [27]	59.1 ± 8.1 vs 57.4 ± 8.6	61.2% vs 50%	Yes or no answer	Vitamin D patient were less obese, had more cancer and COPD	
Murai et al. 2021 [28]	56.5 ± 13.8 vs 56 ± 15.0	41.2% vs 46.6%	A single oral dose of 200,000 IU	Diabetes is commoner in the intervention	
Meltzer et al. 2020 [29]	51.0 ±18.6 vs 45.9 ±17.6	77% vs 74%	1000–3000 IU daily for 14 days	No differences regarding comorbidities	
Oristrell et al. 2021 [30]	70.2 ±15.6 vs 70.7 ±14.7	57.5% vs 57.5%	Questionnaire-based	Heart failure commoner among controls	
Villasis-Keever <i>et al.</i> 2022 [31]	Median 36 vs 39	71% vs 68%	4000 IU daily for 30 days	Type 2 diabetes commoner among control	

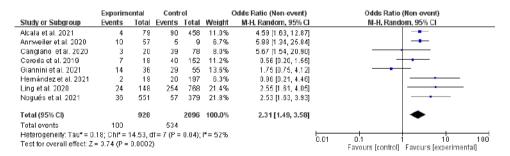


Figure 2: The effects of vitamin D supplementation on mortality among patients with moderate/severe COVID-19.

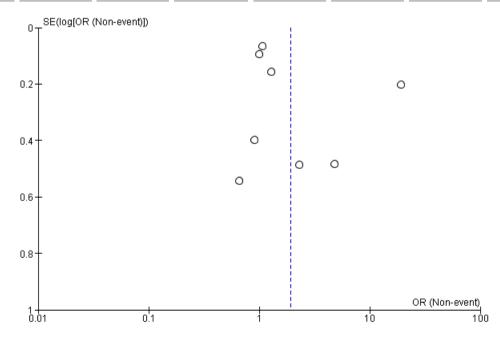

are limited because vitamin D levels are usually low in acute infection; furthermore, most studies

TABLE 5: Newcastle Ottawa risk of bias of observational studies.

Author	Selection bias score	Compatibility score	Outcome bias score	Overall bias score
Alcala et al. 2021 [16]	4	2	3	9
Annweiler <i>et al.</i> 2020 [17]	4	2	2	8
Cangiano et al. 2020 [18]	4	2	1	7
Cereda <i>et al.</i> 2019 [19]	4	2	2	8
Giannini et al. 2021 [20]	4	2	2	8
Hernández et al. 2021 [21]	4	2	2	8
Ling et al. 2020 [21]	4	2	2	8
Nogués et al. 2021 [23]	4	2	2	8
Ma et al. 2019 [27]	4	1	2	7
Meltzer et al. 2020 [29]	4	1	2	7
Oristrell et al. 2021 [30]	4	1	2	7

TABLE 6: Risk of bias assessment of the included studies according to Cochrane risk of bias of randomized controlled trials.

Author	Selection bias ¹	Selection bias ²	Performance bias	Attrition bias	Detection bias	Reporting bias	Overall bias
Brunvoll <i>et al.</i> 2022 [24]	Low	Low	Low	Low	Low	Low	Low
Jolliffe <i>et al</i> . 2022 [25]	Low	Low	Some concerns	Some concerns	Some concerns	Low	Some concerns
Karonova <i>et al.</i> 2022 [26]	Low	Low	Some concerns	Some concerns	Some concerns	Low	Some concerns
Villasis-Keever et al. 2022 [31]	Low	Low	Low	Low	Low	Low	Low
Murai et al. 2021	Low	Low	Low	Low	Low	Low	Low

Figure 3: The effects of vitamin D supplementation on COVID-19 prevention.

did not use accurate liquid chromatography-mass spectroscopy [42, 43]. Also, cells from severe

COVID-19 were shown to dysregulate vitamin D response. However, there is a piece of evidence of normal immune response toward COVID-19 among patients with a non-functional vitamin D receptor [44]. Biological and genetic factors play a crucial role in vitamin D deficiency. Although, >60 polymorphisms have been identified, few loci were strictly related to vitamin D deficiency (genome-wide association studies) [45]. Twenty percent of vitamin D deficiency can be explained by genetic variants including single nucleotide polymorphisms [46]. The implications of genetic and biological factors is that certain pathways might be targeted as therapeutic measure for COVID-19 therapy and prevention [47]. Vitamin D was shown to ameliorate the cytokine storm (the release of interleukin (IL)-6, IL-1 β , IL-17, and tumor necrosis factor-alpha) and reduce the activation of signal transducer and activator of transcription 3. The above mechanism are central to COVID-19 pathological and clinical features [48]. Regarding vitamin D in COVID-19 prevention, Hosseini et al. [32], who included only five studies, and Bassatne et al. [37], who included only three, found no benefits, and contradicting the current findings, a Mendelian randomization study failed to support the use of vitamin D for COVID-outcomes [49]. Plausible explanation might be the difference in vitamin D dose, high intermittent doses of vitamin D paradoxically deplete intracellular vitamin D as a rebound in particular in immune cells [50]. For now, doses of 4000 IU daily are recommended [37]. The strength of this meta-analysis is that it is the first to assess the role of vitamin D in COVID-19 secondary prevention and included a large randomized controlled trials. However, the significant heterogeneity observed substantially limited our findings. Further randomized trials with large sample size focusing on the timing

of vitamin D supplementations (before against hospital), the dose (continuous or intermittent, high versus low), comorbidities, and vaccination status are recommended.

5. Conclusion

Vitamin D supplementation prevented COVID-19 and increased survival among patients admitted with moderate/severe COVID-19. Further randomized control trials assessing the time, duration, and doses of vitamin D are recommended.

Limitation

The study was limited by the inclusion of observational studies, and significant heterogeneity (due to the pooling of studies with different methodologies) was observed in the mortality arm.

Acknowledgments

The authors would like to acknowledge the Saudi Digital Library for granting access to the databases.

Ethical Considerations

The authors did not include any manuscript published by them.

Competing Interests

None

Availability of Data and Material

Data are available within the article.

Funding

None.

References

- [1] Wang, H., Paulson, K. R., Pease, S. A., Watson, S., Comfort, H., Zheng, P., Aravkin, A. Y., Bisignano, C., Barber, R. M., Alam, T., Fuller, J. E., May, E. A., Jones, D. P., Frisch, M. E., Abbafati, C., Adolph, C., Allorant, A., Amlag, J. O., Bang-Jensen, B., . . . Murray, C. J. L., & the COVID-19 Excess Mortality Collaborators. (2022). Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020-21. Lancet, 399(10334), 1513–1536. https://doi.org/10.1016/S0140-6736(21)02796-3
- [2] Marino, R., & Misra, M. (2019, June 27). Extraskeletal effects of vitamin D. *Nutrients*, 11(7), 1460. https://doi.org/10.3390/nu11071460
- [3] Chen, C., Haupert, S. R., Zimmermann, L., Shi, X., Fritsche, L. G., & Mukherjee, B. (2022). Global prevalence of post-coronavirus disease 2019 (COVID-19) condition or long COVID: A meta-analysis and systematic review. *The Journal of Infectious Diseases*, 226(9), 1593–1607. https://doi.org/10.1093/infdis/jiac136
- [4] Silva, I. C. J., & Lazaretti-Castro, M. (2022). Vitamin D metabolism and extraskeletal outcomes: An update. Archives of Endocrinology and Metabolism, 66(5), 748–755. https://doi.org/10.20945/2359-3997000000565
- [5] Entrenas Castillo, M., Entrenas Costa, L. M., Vaquero Barrios, J. M., Alcalá Díaz, J. F., López Miranda, J., Bouillon, R., & Quesada Gomez, J. M. (2020). Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19. The Journal of Steroid Biochemistry and Molecular Biology, 203, 105751. https://doi.org/10.1016/j.jsbmb.2020.105751
- [6] Hastie, C. E., Pell, J. P., & Sattar, N. (2021). Vitamin D and COVID-19 infection and mortality in UK Biobank. European Journal of Nutrition, 60(1), 545– 548. https://doi.org/10.1007/s00394-020-02372-4
- [7] Rawat, D., Roy, A., Maitra, S., Shankar, V., Khanna, P., & Baidya, D. K. (2021). Vitamin D supplementation

- and COVID-19 treatment: A systematic review and meta-analysis. *Diabetes & Metabolic Syndrome*, *15*(4), 102189. https://doi.org/10.1016/j.dsx.2021.102189
- [8] Nguyen, N. N., Raju, M. N. P., da Graca, B., Wang, D., Mohamed, N. A., Mutnal, M. B., Rao, A., Bennett, M., Gokingco, M., Pham, H., & Mohammad, A. A. (2022). 25-hydroxyvitamin D is a predictor of COVID-19 severity of hospitalized patients. *PLoS One*, *17*(5), e0268038. https://doi.org/10.1371/journal.pone.0268038
- [9] Hu, Y., Kung, J., Cave, A., & Banh, H. L. (2022). Effects of vitamin D serum level on morbidity and mortality in patients with COVID-19: A systematic review and meta-analysis. *Journal of Pharmacy & Pharmaceutical Sciences*, 25, 84–92. https://doi.org/10.18433/jpps32590
- [10] Tomaszewska, A., Rustecka, A., Lipińska-Opałka, A., Piprek, R. P., Kloc, M., Kalicki, B., & Kubiak, J. Z. (2022). The role of vitamin D in COVID-19 and the impact of pandemic restrictions on vitamin D blood content. *Frontiers in Pharmacology, 13*, 836738. https://doi.org/10.3389/fphar.2022.836738
- [11] Cannata-Andía, J. B., Díaz-Sottolano, A., Fernández, P., Palomo-Antequera, C., Herrero-Puente, P., Mouzo, R., Carrillo-López, N., Panizo, S., Iba nez, G. H., Cusumano, C. A., Ballarino, C., Sánchez-Polo, V., Pefaur-Penna, J., Maderuelo-Riesco, I., Calvi no-Varela, J., Gómez, M. D., Gómez-Alonso, C., Cunningham, J., Naves-Díaz, M., Douthat, W., & Fernández-Martín, J. L. (2022). COVID-VIT-D trial collaborators. A single-oral bolus of 100,000 IU of cholecalciferol at hospital admission did not improve outcomes in the COVID-19 disease: The COVID-VIT-D-a randomised multicentre international clinical trial. *BMC Medicine*, 20(1), 83. https://doi.org/10.1186/s12916-022-02290-8
- [12] Fernandes, A. L., Murai, I. H., Reis, B. Z., Sales, L. P., Santos, M. D., Pinto, A. J., Goessler, K. F., Duran, C. S. C., Silva, C. B. R., Franco, A. S., Macedo, M. B., Dalmolin, H. H. H., Baggio, J., Balbi, G. G. M., Antonangelo, L., Caparbo, V. F., Gualano, B., & Pereira, R. M. R. (2022). Effect of a single high dose of vitamin D3 on cytokines, chemokines, and growth factor in patients with moderate to severe COVID-19. The American Journal of Clinical Nutrition, 115(3), 790–798. https://doi.org/10.1093/ajcn/nqab426
- [13] Annweiler, C., Beaudenon, M., Gautier, J., Gonsard, J., Boucher, S., Chapelet, G., Darsonval, A., Fougère,

- B., Guérin, O., Houvet, M., Ménager, P., Roubaud-Baudron, C., Tchalla, A., Souberbielle, J. C., Riou, J., Parot-Schinkel, E., Célarier, T., Annweiler, C., Beaudenon, M., ... the COVIT-TRIAL study group. (2022). High-dose versus standard-dose vitamin D supplementation in older adults with COVID-19 (COVIT-TRIAL): A multicenter, open-label, randomized controlled superiority trial. *PLoS Medicine*, *19*(5), e1003999. https://doi.org/10.1371/journal.pmed.1003999
- [14] Hartling, L., Milne, A., Hamm, M. P., Vandermeer, B., Ansari, M., Tsertsvadze, A., & Dryden, D. M. (2013). Testing the Newcastle Ottawa Scale showed low reliability between individual reviewers. *Journal of Clinical Epidemiology*, 66(9), 982–993. https://doi.org/10.1016/j.jclinepi.2013.03.003
- [15] Igelström, E., Campbell, M., Craig, P., & Katikireddi, S. V. (2021). Cochrane's risk of bias tool for non-randomized studies (ROBINS-I) is frequently misapplied: A methodological systematic review. *Journal of Clinical Epidemiology*, 140, 22–32. https://doi.org/10.1016/j.jclinepi.2021.08.022
- [16] Alcala-Diaz, J. F., Limia-Perez, L., Gomez-Huelgas, R., Martin-Escalante, M. D., Cortes-Rodriguez, B., Zambrana-Garcia, J. L., Entrenas-Castillo, M., Perez-Caballero, A. I., López-Carmona, M. D., Garcia-Alegria, J., Lozano Rodríguez-Manche no, A., Arenas-de Larriva, M. D. S., Pérez-Belmonte, L. M., Jungreis, I., Bouillon, R., Quesada-Gomez, J. M., & Lopez-Miranda, J. (2021). Calcifediol treatment and hospital mortality due to COVID-19: A cohort study. *Nutrients*, 13, 1760. Advance online publication. https://doi.org/10.3390/nu13061760
- [17] Annweiler, C., Hanotte, B., Grandin de l'Eprevier, C., Sabatier, J. M., Lafaie, L., & Célarier, T. (2020, November). Vitamin D and survival in COVID-19 patients: A quasi-experimental study. The Journal of Steroid Biochemistry and Molecular Biology, 204, 105771. https://doi.org/10.1016/j.jsbmb.2020.105771
- [18] Cangiano, B., Fatti, L. M., Danesi, L., Gazzano, G., Croci, M., Vitale, G., Gilardini, L., Bonadonna, S., Chiodini, I., Caparello, C. F., Conti, A., Persani, L., Stramba-Badiale, M., & Bonomi, M. (2020). Mortality in an Italian nursing home during COVID-19 pandemic: Correlation with gender, age, ADL, vitamin D supplementation, and limitations of the diagnostic tests. *Aging (Albany NY)*, 12(24), 24522–24534. https://doi.org/10.18632/aging.202307

- [19] Cereda, E., Bogliolo, L., Lobascio, F., Barichella, M., Zecchinelli, A. L., Pezzoli, G., & Caccialanza, R. (2021). Vitamin D supplementation and outcomes in coronavirus disease 2019 (COVID-19) patients from the outbreak area of Lombardy, Italy. *Nutrition (Burbank, Los Angeles County, Calif.)*, 82, 111055. https://doi.org/10.1016/j.nut.2020.111055
- [20] Giannini, S., Passeri, G., Tripepi, G., Sella, S., Fusaro, M., Arcidiacono, G., Torres, M. O., Michielin, A., Prandini, T., Baffa, V., Aghi, A., Egan, C. G., Brigo, M., Zaninotto, M., Plebani, M., Vettor, R., Fioretto, P., Rossini, M., Vignali, A., . . . Bertoldo, F. (2021). Effectiveness of in-hospital cholecalciferol use on clinical outcomes in comorbid COVID-19 patients: A hypothesis-generating study. *Nutrients*, *13*(1), 219. https://doi.org/10.3390/nu13010219
- [21] Hernández, J. L., Nan, D., Fernandez-Ayala, M., García-Unzueta, M., Hernández-Hernández, M. A., López-Hoyos, M., Mu noz-Cacho, P., Olmos, J. M., Gutiérrez-Cuadra, M., Ruiz-Cubillán, J. J., Crespo, J., & Martínez-Taboada, V. M. (2021). Vitamin D status in hospitalized patients with SARS-CoV-2 infection. The Journal of Clinical Endocrinology and Metabolism, 106(3), e1343–e1353. https://doi.org/10.1210/clinem/dgaa733
- [22] Ling, S. F., Broad, E., Murphy, R., Pappachan, J. M., Pardesi-Newton, S., Kong, M. F., & Jude, E. B. (2020). High-dose cholecalciferol booster therapy is associated with a reduced risk of mortality in patients with COVID-19: A cross-sectional multicentre observational study. *Nutrients*, 12(12), 3799. https://doi.org/10.3390/nu12123799
- [23] Nogues, X., Ovejero, D., Pineda-Moncusí, M., Bouillon, R., Arenas, D., Pascual, J., Ribes, A., Guerri-Fernandez, R., Villar-Garcia, J., Rial, A., Gimenez-Argente, C., Cos, M. L., Rodriguez-Morera, J., Campodarve, I., Quesada-Gomez, J. M., & Garcia-Giralt, N. (2021). Calcifediol treatment and COVID-19-related outcomes. *The Journal of Clinical Endocrinology and Metabolism, 106*(10), e4017–e4027. https://doi.org/10.1210/clinem/dgab405
- [24] Brunvoll, S. H., Nygaard, A. B., Ellingjord-Dale, M., Holland, P., Istre, M. S., Kalleberg, K. T., Søraas, C. L., Holven, K. B., Ulven, S. M., Hjartåker, A., Haider, T., Lund-Johansen, F., Dahl, J. A., Meyer, H. E., & Søraas, A. (2022). Prevention of covid-19 and other acute respiratory infections with cod liver oil supplementation, a low dose vitamin D supplement:

- Quadruple blinded, randomised placebo controlled trial. *BMJ (Clinical Research Ed.), 378*, e071245. https://doi.org/10.1136/bmj-2022-071245
- [25] Jolliffe, D. A., Holt, H., Greenig, M., Talaei, M., Perdek, N., Pfeffer, P., Vivaldi, G., Maltby, S., Symons, J., Barlow, N. L., Normandale, A., Garcha, R., Richter, A. G., Faustini, S. E., Orton, C., Ford, D., Lyons, R. A., Davies, G. A., Kee, F., . . . Martineau, A. R. (2022). Effect of a test-and-treat approach to vitamin D supplementation on risk of all cause acute respiratory tract infection and covid-19: Phase 3 randomised controlled trial (CORONAVIT). BMJ (Clinical Research Ed.), 378, e071230. https://doi.org/10.1136/bmj-2022-071230
- [26] Karonova, T. L., Chernikova, A. T., Golovatyuk, K. A., Bykova, E. S., Grant, W. B., Kalinina, O. V., Grineva, E. N., & Shlyakhto, E. V. (2022). Vitamin D intake may reduce SARS-CoV-2 infection morbidity in health care workers. *Nutrients*, *14*(3), 505. https://doi.org/10.3390/nu14030505
- [27] Ma, H., Zhou, T., Heianza, Y., & Qi, L. (2021). Habitual use of vitamin D supplements and risk of coronavirus disease 2019 (COVID-19) infection: A prospective study in UK Biobank. *The Ameri*can Journal of Clinical Nutrition, 113(5), 1275–1281. https://doi.org/10.1093/ajcn/nqaa381
- [28] Murai, I. H., Fernandes, A. L., Sales, L. P., Pinto, A. J., Goessler, K. F., Duran, C. S. C., Silva, C. B. R., Franco, A. S., Macedo, M. B., Dalmolin, H. H. H., Baggio, J., Balbi, G. G. M., Reis, B. Z., Antonangelo, L., Caparbo, V. F., Gualano, B., & Pereira, R. M. R. (2021). Effect of a single high dose of vitamin D3 on hospital length of stay in patients with moderate to severe COVID-19: A randomized clinical trial. *Journal of the American Medical Association, 325*(11), 1053–1060. https://doi.org/10.1001/jama.2020.26848
- [29] Meltzer, D. O., Best, T. J., Zhang, H., Vokes, T., Arora, V., & Solway, J. (2020). Association of vitamin D status and other clinical characteristics with COVID-19 test results. *JAMA Network Open*, 3(9), e2019722. https://doi.org/10.1001/jamanetworkopen.2020.19722
- [30] Oristrell, J., Oliva, J. C., Subirana, I., Casado, E., Domínguez, D., Toloba, A., Aguilera, P., Esplugues, J., Fafián, P., & Grau, M. (2021). Association of calcitriol supplementation with reduced COVID-19 mortality in patients with chronic kidney disease: A populationbased study. *Biomedicines*, 9, 506. https://doi.org/10.

3390/biomedicines9050509

- [31] Villasis-Keever, M. A., López-Alarcón, M. G., Miranda-Novales, G., Zurita-Cruz, J. N., Barrada-Vázquez, A. S., González-Ibarra, J., Martínez-Reyes, M., Grajales-Mu niz, C., Santacruz-Tinoco, C. E., Martínez-Miguel, B., Maldonado-Hernández, J., Cifuentes-González, Y., Klünder-Klünder, M., Gardu no-Espinosa, J., López-Martínez, B., & Parra-Ortega, I. (2022). Efficacy and safety of vitamin D supplementation to prevent COVID-19 in frontline healthcare workers. A randomized clinical trial. Archives of Medical Research, 53(4), 423–430. https://doi.org/10.1016/j.arcmed.2022.04.003
- [32] Hosseini, B., El Abd, A., & Ducharme, F. M. (2022). Effects of vitamin D supplementation on COVID-19 related outcomes: A systematic review and meta-analysis. *Nutrients*, 14(10), 2134. https://doi.org/10.3390/nu14102134
- [33] Pal, R., Banerjee, M., Bhadada, S. K., Shetty, A. J., Singh, B., & Vyas, A. (2022). Vitamin D supplementation and clinical outcomes in COVID-19: A systematic review and meta-analysis. *Jour*nal of Endocrinological Investigation, 45, 53–68. https://doi.org/10.1007/s40618-021-01614-4
- [34] Annweiler, G., Corvaisier, M., Gautier, J., Dubée, V., Legrand, E., Sacco, G., & Annweiler, C. (2020). Vitamin D supplementation associated to better survival in hospitalized frail elderly COVID-19 patients: The GERIA-COVID quasi-experimental study. *Nutrients*, 12(11), 3377. https://doi.org/10.3390/nu12113377
- [35] Shah, K., Saxena, D., & Mavalankar, D. (2021). Vitamin D supplementation, COVID-19 and disease severity: A meta-analysis. *QJM*, 114(3), 175–181. https://doi.org/10.1093/qjmed/hcab009
- [36] Nikniaz, L., Akbarzadeh, M. A., & Hosseinifard, Hosseini, M.-S. (2021). The impact of vitamin D supplementation on mortality rate and clinical outcomes of COVID-19 patients: A systematic review and meta-analysis. MedRxiv. 2:S1–S12. https://doi.org/10.1101/2021.01.04.21249219
- [37] Bassatne, A., Basbous, M., Chakhtoura, M., El Zein, O., Rahme, M., & El-Hajj Fuleihan, G. (2021). The link between COVID-19 and VItamin D (VIVID): A systematic review and meta-analysis. Metabolism: Clinical and Experimental, 119, 154753. https://doi.org/10.1016/j.metabol.2021.154753

- [38] Martineau, A. R., Jolliffe, D. A., Hooper, R. L., Greenberg, L., Aloia, J. F., Bergman, P., Dubnov-Raz, G., Esposito, S., Ganmaa, D., Ginde, A. A., Goodall, E. C., Grant, C. C., Griffiths, C. J., Janssens, W., Laaksi, I., Manaseki-Holland, S., Mauger, D., Murdoch, D. R., Neale, R., . . . Camargo, C. A., Jr. (2017). Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. *BMJ (Clinical Research Ed.)*, 356, i6583. https://doi.org/10.1136/bmj.i6583
- [39] Jolliffe, D. A., Camargo, C. A., Jr., Sluyter, J. D., Aglipay, M., Aloia, J. F., Ganmaa, D., Bergman, P., Borzutzky, A., Damsgaard, C. T., Dubnov-Raz, G., Esposito, S., Gilham, C., Ginde, A. A., Golan-Tripto, I., Goodall, E. C., Grant, C. C., Griffiths, C. J., Hibbs, A. M., Janssens, W., . . . Martineau, A. R. (2020). Vitamin D supplementation to prevent acute respiratory infections: systematic review and meta-analysis of aggregate data from randomised controlled trials. medRxiv [Preprint]. 2020.07.14.20152728. https://doi.org/10.1101/2020.07.14.20152728
- [40] Quesada-Gomez, J. M., Entrenas-Castillo, M., & Bouillon, R. (2020). Vitamin D receptor stimulation to reduce acute respiratory distress syndrome (ARDS) in patients with coronavirus SARS-CoV-2 infections: Revised Ms SBMB 2020_166. The Journal of Steroid Biochemistry and Molecular Biology, 202, 105719. https://doi.org/10.1016/j.jsbmb.2020.105719
- [41] Bilezikian, J. P., Bikle, D., Hewison, M., Lazaretti-Castro, M., Formenti, A. M., Gupta, A., Madhavan, M. V., Nair, N., Babalyan, V., Hutchings, N., Napoli, N., Accili, D., Binkley, N., Landry, D. W., & Giustina, A. (2020). Mechanisms in endocrinology: Vitamin D and COVID-19. European Journal of Endocrinology, 183(5), R133–R147. https://doi.org/10.1530/EJE-20-0665
- [42] Dirks, N. F., Ackermans, M. T., Lips, P., de Jongh, R. T., Vervloet, M. G., de Jonge, R., & Heijboer, A. C. (2018). The when, what & how of measuring vitamin D metabolism in clinical medicine. *Nutrients*, 10(4), 482. https://doi.org/10.3390/nu10040482
- [43] D'Avolio, A., Avataneo, V., Manca, A., Cusato, J., De Nicolò, A., Lucchini, R., Keller, F., & Cantù, M. (2020). 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. *Nutrients*, *12*(5), 1359. https://doi.org/10.3390/nu12051359

- [44] Feentved Ødum, S. L., & Kongsbak-Wismann, M. (2023). Vitamin D and SARS-CoV-2. *Basic & Clinical Pharmacology & Toxicology, 133*(1), 6–15. https://doi.org/10.1111/bcpt.13872
- [45] Alcalá-Santiago, Á., Rodríguez-Barranco, M., Rava, M., Jiménez-Sousa, M. Á., Gil, Á., Sánchez, M. J., Molina-Montes, E., & Vitamin, D. (2022). Vitamin D deficiency and COVID-19: A biological database study on pathways and gene-disease associations. *International Journal of Molecular Sciences*, 23(22), 14256. https://doi.org/10.3390/ijms232214256
- [46] Kouhpayeh, S., Shariati, L., Boshtam, M., Rahimmanesh, I., Mirian, M., Esmaeili, Y., Najaflu, M., Khanahmad, N., Zeinalian, M., Trovato, M., Tay, F. R., Khanahmad, H., & Makvandi, P. (2021). The molecular basis of COVID-19 pathogenesis, conventional and nanomedicine therapy. *International Journal of Molecular Sciences*, 22(11), 5438. https://doi.org/10.3390/ijms22115438
- [47] Gharibi, T., Babaloo, Z., Hosseini, A., Abdollahpour-Alitappeh, M., Hashemi, V., Marofi, F., Nejati, K., & Baradaran, B. (2020). Targeting STAT3 in cancer and autoimmune diseases. *European Journal of Pharmacology*, 878, 173107. https://doi.org/10.1016/j.ejphar.2020.173107
- [48] Chang, Z., Wang, Y., Zhou, X., & Long, J. E. (2018). STAT3 roles in viral infection: Antiviral or proviral? *Future Virology, 13*(8), 557–574. https://doi.org/10.2217/fvl-2018-0033
- [49] Butler-Laporte, G., Nakanishi, T., Mooser, V., Morrison, D. R., Abdullah, T., Adeleye, O., Mamlouk, N., Kimchi, N., Afrasiabi, Z., Rezk, N., Giliberti, A., Renieri, A., Chen, Y., Zhou, S., Forgetta, V., & Richards, J. B. (2021). Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: A Mendelian randomization study. *PLoS Medicine*, 18(6), e1003605. https://doi.org/10.1371/journal.pmed.1003605
- [50] Griffin, G., Hewison, M., Hopkin, J., Kenny, R. A., Quinton, R., Rhodes, J., Subramanian, S., & Thickett, D. (2021). Perspective: Vitamin D supplementation prevents rickets and acute respiratory infections when given as daily maintenance but not as intermittent bolus: Implications for COVID-19. Clinical Medicine (London, England), 21(2), e144—e149. https://doi.org/10.7861/clinmed.2021-0035