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to their persistence in the environment [1]. MPs, plas-
tic particles less than 5 mm in diameter, are considered 
persistent pollutants due to their ability to accumulate in 
organisms over time and capacity for long-range trans-
port [2]. Nanoplastics (NPs), potentially derived from the 
further breakdown of MPs and typically range from 1 to 
100 nm in diameter are thought to exhibit more distinct 
physicochemical behaviors due to their smaller size and 
larger surface area.

Both MPs and NPs are found in various environ-
ments, including air, water, soil, household products, and 
food leading to unavoidable human exposure through 

Introduction
The unceasing production of plastic waste remains a seri-
ous threat to environmental sustainability for decades 
since the invention of plastics. Despite the introduction 
of biodegradable plastics as a solution to reduce pollu-
tion, their incomplete degradation regrettably results 
in greater amount of microplastics (MPs), which adds 
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Abstract
Global plastic waste production remains a critical environmental issue. Microplastics (MPs), plastic particles less than 
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fatty acid (SCFA) production, alter metabolic functions, and modulate immune pathways, contributing to intestinal 
diseases, metabolic syndrome, and chronic inflammation. The extent of disruption is influenced by MP-specific 
properties such as type, size, and concentration. These results suggest that MPs are emerging environmental risk 
factors with tangible implications for human health. To fully understand the health concerns associated with MPs 
long-term, human-relevant studies with standardized methodologies are urgently needed to define safe exposure 
levels and guide policies aimed at reducing MP-related health risks.
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ingestion, inhalation, and skin contact [3]. Alarmingly, 
MPs and NPs are known to be present and accumulated 
in human tissues including the lungs, placenta, feces, 
and blood [4, 5]. These findings raise urgent concerns 
about their potential impact on human health. In fact, 
this widespread exposure has been associated with the 
increased risk of several acute and chronic health con-
ditions, including inflammatory bowel disease (IBD), 
infertility, diabetes, and neurodegenerative disorders. 
Among the known exposure routes, food consumption 
is considered the primary source of MPs. Moreover, MPs 
contamination in drinking water systems is widespread. 
Due to its high daily intake volume and consistent con-
tamination across both tap and bottled sources, it repre-
sents a critical and unavoidable pathway for chronic MP 
exposure in humans [6, 7]. Once ingested, MPs can be 
absorbed through the gastrointestinal (GI) tract, disrupt-
ing gut microbiota by altering dietary habits, microbial 
metabolism, and immune responses [8].

The human microbiome is a diverse community of 
microorganisms residing in different parts of the body 
sites, including the skin, oral cavity, reproductive system, 
and gut. Due to its critical role in health and disease, the 
gut microbiome has drawn the most scientific attention 
[9]. The gut microbiome plays a crucial role in human 
physiology, regulating immune responses, metabolism, 
and intestinal integrity. Disruptions in microbial compo-
sition also known as dysbiosis, have been linked to intes-
tinal barrier dysfunction and metabolic disorders. One 
essential role of the gut microbiome is the fermentation 
of dietary components, which leads to the production of 
key metabolites such as short-chain fatty acids (SCFAs) 
and aryl hydrocarbon receptor (AhR) ligands s [10, 11]. 
These metabolites are known to support intestinal barrier 

integrity and modulate immune responses, providing evi-
dence for its influence on GI and systemic health [12, 13].

As aforementioned, ingested MPs could interact with 
the intestinal environment before excretion, potentially 
causing toxic effects on the gut [14].While several stud-
ies have reported the detection of MPs in human feces [4, 
5], a critical lack remains in synthesizing and analyzing 
how MPs affect hut microbiota composition, diversity 
and function specifically in humans. Existing reviews 
have largely centered on environmental contamination or 
findings from animal models, without addressing human-
relevant microbiome alterations. The studies in mam-
mals and aquatic organisms consistently demonstrated 
that MPs, such as polystyrene (PS), polyethylene (PE), 
polyvinyl chloride (PVC), and polyethylene terephthal-
ate (PET), accumulate in the intestinal tract, leading to 
conditions such as IBD, irritable bowel syndrome (IBS), 
and colitis [1, 15]. PS MPs, mainly has also been shown 
to disrupt gut microbial composition and induce hepatic 
lipid metabolism disorders in mice, suggesting gut-level 
toxicity [16]. Segment-specific intestinal damage espe-
cially in the colon has been linked to, reduced microbiota 
diversity and impairing nutrient metabolism [17]. Expo-
sure to MPs worsened colitis, leading to shorter colon 
length, increased inflammation, reduced mucus secre-
tion, thereby increasing the risk of colorectal cancer. MPs 
have been increasing suggested as potential environmen-
tal drivers of rising early-onset colorectal cancer rates 
[18, 19]. Despite this growing concern, no study to date 
has analyzed how specific types of MPs, affect the human 
gut microbiome and there is also a lack of synthesized 
evidence on the biological mechanisms by which MPs 
influence microbial communities.
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This systematic review aims to examine the effects 
of MPs on the human gut microbiome, focusing on 
changes in microbial composition at the phylum, family, 
and genus levels, along with the alterations in microbial 
diversity and richness. It also looks into how MPs disrupt 
microbial functions and metabolic pathways. It highlights 
the health implications of MP-induced dysbiosis and 
identifies consistent microbial patterns. Furthermore, 
the review assesses how MP-specific properties such 
as size, shape, and polymer type influence microbiome 
responses, emphasizing the importance of additional 
research to address gaps in existing studies, providing 
a critical foundation for future risk assessment and tar-
geted research for more understanding of MPs’ impact 
on human health.

Methodology
This systematic review was conducted in adherence to 
the guidelines outlined in the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
framework. PRISMA offers a structured and transparent 
approach to identifying, selecting, and synthesizing rele-
vant research, ensuring the reliability and generalizability 
of the findings.

The literature search was conducted in July 2024 using 
two major scientific databases, Scopus and PubMed using 
the following search string “(microplastic OR nanoplas-
tic) AND (human) AND (microbiome* OR microbiota* 
OR microbiomic*)”, designed to identify relevant studies, 
pertaining to the impact of micro- and nano-plastics on 
the human gut microbiome. No publication date restric-
tions were imposed, thereby ensuring the inclusion of all 
pertinent publications. The initial search resulted in a 
total of 320 records, with 235 from Scopus and 85 from 
PubMed, covering studies published between 2021 and 
May 2024.

Predefined inclusion and exclusion criteria were 
applied to ensure an unbiased screening process. To 
focus on original data and findings, only primary research 
articles were included. This excluded secondary publica-
tions such as reviews and book chapters to avoid duplica-
tion of findings that are potentially already identified in 
those secondary publications. Second, the language of 
publication was restricted to English to mitigate language 
barriers and potential bias associated with translation. 
Finally, all studies included had to directly address the 
impact of MPs and nanoplastics (NPs) on the human gut 
microbiome. Hence, studies outside the scope of this spe-
cific human health concern or those using animal models 
were excluded.

To expedite the screening process and ensure effi-
ciency, initial filtering was conducted within each data-
base, i.e. Scopus and PubMed, using their built-in filters 
to eliminate non-primary research and non-English 

studies. Following this initial filter, the search results 
from both databases were exported to EndNote 21, a 
reference management software, to identify and remove 
duplicate entries. Next, titles and abstracts were screened 
against the predefined inclusion and exclusion criteria. 
This ensured only English-language primary research 
studies that investigating the effects of MPs and NPs on 
the human gut microbiome were advanced for full-text 
evaluation. A total of 18 studies met these criteria and 
were retrieved for full-text evaluation. A full-text review 
of these 18 studies resulted in the exclusion of 6 addi-
tional studies that were either review articles or utilised 
animal models.

In the selection process, human cohort studies due to 
their higher external validity and direct relevance were 
prioritized. In vitro and in silico models were included 
only when they offered mechanistic insights that comple-
mented findings of human studies. The quality of obser-
vational studies was evaluated using the Risk Of Bias In 
Non-randomized Studies– of Interventions (ROBINS-I) 
tool. Formal risk-of-bias assessments were not applied 
to in vitro or in silico studies; however, their method-
ological limitations were acknowledged and considered 
during the synthesis and interpretation of results. Ulti-
mately, this selection process yielded 12 high-quality 
studies for inclusion in this systematic review. These 
comprised cross-sectional observational studies (n = 5) 
and in vitro simulated digestion models using human-
derived samples (n = 7). Given the involvement of human 
participants or their biological materials, ethical approv-
als and informed consent were reported in most studies 
(n = 8). Two studies stated that ethical approval was not 
required under their national regulations for sample use 
(n = 2), while two studies (n = 2) did not provide informa-
tion regarding ethical oversight. Figure  1 represents a 
flow diagram using PRISMA protocol that summarizes 
our screening processes to obtain the 12 studies for our 
systematic review.

Results and discussion
Numerous studies have shown the harmful effects of MPs 
exposure in tissue cultures and animal models. However, 
direct evidence of its impact on human health remains 
lacking. Recent research has outlined the presence of 
MPs in various parts of the human body [20]. Extensive 
animal studies have shown that MPs exposure disrupts 
gut microbiota and causes dysbiosis [15].

This systematic review examines the impact of MPs 
exposure on microbiota composition at the phylum, fam-
ily, and genus levels. Most of the studies reviewed utilize 
fecal samples, which are subsequently analyzed in in vitro 
models designed to mimic the human gastrointestinal 
system [1, 21–24]. A smaller number of studies focus on 
meconium samples [25]. The final included studies that 
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met the inclusion criteria, particularly those focusing on 
human subjects or using human-derived samples, were 
geographically limited. Most studies originated from a 
small number of countries, including China (n = 7), fol-
lowed by Spain (n = 2), France (n = 2), and Indonesia 
(n = 1), reflecting the narrow geographic distribution of 
current human-relevant research on MP-microbiome 
interactions. China’s prominence in MP research is 
closely tied to its status as a major plastics producer and 
its central role in global plastic waste management. Stud-
ies frequently report high MP levels in China’s inland 
waters, particularly in densely populated and indus-
trialized regions, likely driving the volume of research 

output in this area [26, 27]. The key characteristics of 
the included studies analyzing the impact of MPs on the 
human gut microbiome are summarized in Table 1.

Impact of microplastics on microbiota composition
At the phylum level, gut bacterial composition varies 
across intestinal compartments, as outlined in Table  2. 
Microbiome analysis from fecal samples, conducted using 
simulated in vitro GI models, show distinct increases and 
decreases in specific phyla. PET were associated with 
shifts in bacterial communities, with increases in phyla 
such as Firmicutes, Synergistetes, and Desulfobacterota, 
alongside reductions in Proteobacteria and Bacteroidetes 

Fig. 1  PRISMA flow diagram of this systematic review. The diagram illustrates the study selection process in accordance with the PRISMA 2020 guidelines. 
The flowchart presents the number of records (n = 320) identified through database searching and other sources, the number of duplicates removed, the 
records screened, assessed for eligibility, and the final number of studies (n = 12) included in the qualitative and/or quantitative synthesis. The reasons for 
exclusion at each stage are documented to ensure transparency of the selection process
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in all compartments - ascending colon (AC), descend-
ing colon (DC) and transverse colon (TC) compartments 
[29]. Moreover, exposure to a mixture of MPs was asso-
ciated with an increase in Actinobacteria and a decrease 
in Bacteroidetes [8]. Notably in human, Firmicutes and 
Bacteroidetes are the main constituents of gut micro-
biota, along with smaller proportions of Proteobacteria 
and Actinobacteria. The disproportion of these microbial 
groups could potentially lead to gastrointestinal issues, 
immune disorders, neurological conditions and disrup-
tions in energy metabolism [30]. MPs may exacerbate this 
imbalance by as vectors for pathogens and pollutants that 
accumulate in the GI tract, disturbing the microbial com-
munities [31].

The Firmicutes/Bacteroidetes ratio, with increased Fir-
micutes and reduced Bacteroidetes have been found in 
obesity, and other metabolic diseases [30, 32]. However, 
Firmicutes play role in fermenting dietary fibers into 
SCFAs, strengthening the intestinal barrier and reducing 
inflammation [33], whereas the reduction of Bacteroide-
tes potentially lead to reduced SCFA production, and 
adverse effects on gut health [34]. Moreover, a decrease 
in Bacteroidetes has been observed in individuals with 
IBD [35]. As Bacteroidetes are significant producers of 
SCFAs, and their reduction can compromise the func-
tions of SCFA, leading to increased intestinal permeabil-
ity and inflammation, that potentially develop into IBD 
[36]. Both phyla are important for immunomodulation, 
as their decline in numbers will likely result in systemic 
health issues, such as metabolic syndrome and autoim-
mune disorders. Another phylum of emerging inter-
est, Synergistetes are part of the healthy gut and vaginal 
microbiome, their overgrowth may transition into oppor-
tunistic pathogens [37]. Desulfobacterota are known for 
their ability to produce hydrogen sulfide (H2S), which in 

controlled amounts supports intestinal health. However, 
increased proportion of various phyla could alter micro-
bial ecosystems by consuming hydrogen and influence 
metabolic pathways, which could potentially be impli-
cated in inflammation and childhood nutrition [38]. 
Increased H2S has resulted in various GI issues, including 
constipation, diarrhea and IBS [39].

At the family level, MP exposure significantly alters 
gut bacteria with specific effects depending on the type 
of MP. For PE, at a concentration of 21  mg of MPs per 
day, studies using Tm-ARCOL (Toddler mucosal arti-
ficial colon) and adult M-ARCOL models revealed 
increased abundance of families such as Acidaminococ-
caceae, Dethiosulfovibrionaceae, Enterobacteriaceae, 
Moraxellaceae, Oscillospiraceae, and Planococcaceae 
in both luminal and mucosal phases. In contrast, fami-
lies like Monoglobaceae, Rikenellaceae, Tannerellaceae, 
and Lachnospiraceae showed decreasing trends [21, 22]. 
Exposure to polycaprolactone (PCL) led to an increase 
in Selenomonadaceae, while families such as Bifidobac-
teriaceae, Oscillospiraceae, Lactobacillaceae, Lachno-
spiraceae, Peptostreptococcaceae, Enterococcaceae, and 
Desulfovibrionaceae were significantly reduced. Simi-
larly, exposure to polylactic acid (PLA) MPs resulted 
in an increase in Prevotellaceae, but reductions were 
observed in families like Bifidobacteriaceae, Oscillospi-
raceae, Lactobacillaceae, and Rikenellaceae [1]. The find-
ings are also summarized in Table 3.

Based on the findings from our literature compila-
tion, many of the bacterial families affected by MP expo-
sure, such as Acidaminococcaceae, Lactobacillaceae, 
Lachnospiraceae, Peptostreptococcaceae, and Oscillo-
spiraceae, belong to the phylum Firmicutes [40]. Entero-
bacteriaceae, Moraxellaceae, and Sutterellaceae are part 
of the phylum Proteobacteria [40–42]. Families such as 

Table 2  Effects of MPs exposure on human gut Microbiome at the phylum level
Type of MPs MP concentration/

size
Sample/
Model

Effect on bacteria References
Increase Decrease

PET 166 mg/intake Fecal (in vitro GI simulator model) AC compartment:
Firmicutes
Desulfobacterota
TC compartment:
Synergistetes
Proteobacteria
Desulfobacterota
DC compartment:
Desulfobacterota
Synergistetes

AC compartment:
Proteobacteria
Bacteroidetes
TC compartment:
Bacteroidetes
DC compartment:
Bacteroidetes

 [29]

MPs (not specified) Detected concentration - 
Exposure group:
24.650 items/g
Control group:
19.645 items/g
Post-exposure:
9.805 items/g
(particle size − 20–500 μm)

Fecal Actinobacteria Bacteroidetes  [8]
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Prevotellaceae, Rikenellaceae, and Tannerellaceae belong 
to the phylum Bacteroidetes [43]. Lastly, Desulfovibrio-
naceae and Dethiosulfovibrionaceae are part of the phy-
lum Desulfobacterota [38]. The changes observed in 
bacterial families upon MP exposure all belong to phy-
lum groups, which also exhibited shifts at the phylum 
groups.

Among the bacterial families, certain families such 
as Desulfovibrionaceae, Dethiosulfovibrionaceae and 
Enterobacteriaceae are recognized as pathobionts [21, 
22]. The Dethiosulfovibrionaceae family has been asso-
ciated with colorectal cancer, while Enterobacteriaceae, 
which includes well-known enteric pathogens of Esch-
erichia, Shigella, Campylobacter, and Salmonella, has 
been associated with IBS and IBDs, such as Crohn’s dis-
ease and ulcerative colitis [44]. It contributes to intestinal 
inflammation by producing pro-inflammatory molecules 
and disrupting gut barrier function [42, 45]. Interest-
ingly, Enterobacteriaceae are the major carriers of antibi-
otic resistance genes, one particular is the resistance to 
a major group of antibiotics, the carbapenems [46]. The 
relationship between IBD and antibiotic resistance genes 
still remain a subject of intrigue for the researchers.

At the genus level, MPs exposure induces changes in 
bacterial composition, with genera showing increases 
and decreases depending on the type. It has been 
observed that increases in Bacteroides and Clostridium 
has been associated with the exposure to most types of 
MPs detected across fecal and meconium samples [20, 
25]. Clostridium can degrade PE, suggesting its ability 
to adapt and thrive in its presence. However, excessive 
growth of Clostridium can result in diarrhea and the pro-
duction of intestinal toxins, posing serious health risks 
[11]. Studies also report an increased abundance of gen-
era associated with inflammatory responses, including 
Streptococcus, Treponema, Escherichia-Shigella, Biloph-
ila, and Porphyromonas. Meconium samples exposed 
to polyamide (PA) MPs, showed a rise in Treponema, 
Escherichia-Shigella, Bacteroides, and Clostridium [25]. 
The observed rise in in Bacteroidetes species following 
exposure to PA MPs may be attributed to the specific 
physicochemical properties of PA, although the exact 
mechanisms remain ambiguous. In this case, the meco-
nium samples were collected immediately after birth 
using a plastic-free and sterile protocol, suggesting that 
MPs likely entered the fetal environment through trans-
placental transfer from the maternal circulation [47, 48]. 
This may be explained by the fact MPs elicit inflamma-
tory responses and oxidative stress in maternal tissues, 
causing the increased placental permeability could facili-
tate the translocation of MPs, along with any adsorbed 
pathogens or pro-inflammatory mediators [48]. MPs have 
been observed to accumulate in fetal lungs, as reflected 
in meconium [49], which may be reflected in meconium 

aspiration syndrome (MAS), although this association 
warrants further investigation. Escherichia-Shigella and 
Bilophila, particularly Bilophila wadsworthia, are asso-
ciated with pro-inflammatory effects, as B. wadswor-
thia promotes T-helper type 1 (TH1)-mediated immune 
response and potentially exacerbates colitis. These bacte-
ria have been implicated in the pathogenesis of diseases 
such as IBD, colorectal cancer, and coronary artery dis-
eases [29].

MP exposure in meconium samples also increases the 
prevalence of Porphyromonas and Streptococcus, both of 
which are often implicated in pathogenic conditions [25]. 
A similar effect was observed in fecal samples exposed 
to PET MPs, abundance of Bilophila elevated across all 
intestinal compartments (AC, DC and TC) examined 
[29]. MPs exposure also led to an increase in Faecalibac-
terium and Bifidobacterium genera which are typically 
considered the markers of gut health. Under a balanced 
condition, these bacteria have the potential to mitigate 
inflammatory and metabolic diseases [14, 23]. However, 
an overgrowth of Faecalibacterium contributes to the 
development of numerous gut-related disorders, includ-
ing Crohn’s disease in children [50].

In contrast, MPs exposure has been shown to reduce 
beneficial probiotic bacteria, notably Lactobacillus. Lac-
tobacillus species exhibit properties through the pro-
duction of antimicrobial compounds, including organic 
acids, hydrogen peroxide, diacetyl, and bacteriocins. 
Studies have demonstrated the efficacy of Lactobacil-
lus against a range of pathogens, such as Staphylococcus 
aureus, Listeria monocytogenes, Shigella flexneri, Kleb-
siella pneumoniae [11]. Reductions in other health-
promoting genera, such as Blautia, Parabacteroides, 
Alistipes and Pelomonas have also been observed fol-
lowing MP exposure [14, 25, 29]. Parabacteroides and 
Alistipes are of particular interest due to their reported 
protective roles against inflammation, metabolic disor-
ders, colitis, and IBS [33, 51]. A summary of the observed 
changes in bacterial composition, including shifts in spe-
cific genera and their abundance in response to MPs is 
presented in Table 4.

Impact of microplastics on microbiota diversity and 
richness
Our findings reveal that the MPs exert varying effects on 
the α-diversity and richness of microbiota with differ-
ent types of MPs. PET MPs reduce α-diversity indices, 
such as Observed species and Shannon index, indicat-
ing a decline in microbial diversity [29]. PVC MPs were 
also negatively correlated with Chao1 and Observed 
species indices [14]. PS MPs, particularly in meconium 
microbiota, were negatively related to the Chao1 index 
[25]. Similarly, PCL and PLA MPs significantly reduced 
gut microbiota α-diversity [1]. This trend of decrease in 
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Type of MPs Metabolic Activity Effects References
PE SCFA production Increased acetate

Decreased Propionate and butyrate
 [22]

AhR activity Less activation  [21]
Volatolomics (VOCs production) Overproduced 7 hydrocarbon compounds

(1) Pentane, 3-methyl-
(2) Cyclopentane, 1,1,3-trimethyl-
(3) 1-heptene, 2, 4-dimethyl-
(4) Heptane, 2,3-dimethyl-
(5) Methyl C9-alkane - RI 814
(6) Methyl C9-alkane - RI 821
(7) Methyl C9-alkane - RI 861
2 ketones
(1) 2-heptanone
(2) 2-heptanone, 4-methyl-
2 alcohols
(1) 1-hexanol
(2) 1-heptanol
2 aldehydes
(1) Heptanal
(2) Octanal
Underproduced 8 esters of propanoic acid, ethyl ester and  
butanoic acid
Increased abundance of 3 hydrocarbons
(1) pentane, 3-methyl-
(2) cyclopentane, 1,1,3- trimethyl-
(3) 1-heptene, 2,4-dimethyl-
1 alcohol
(1) 3-nonyn-2-ol
1 Nitrogen compound
(1) Indole, 3-methyl-

 [21]

Carbohydrate metabolism Decreased pentose phosphate pathway
Inhibited fructose and mannose metabolism

Bile acid synthesis Decreased
PET SCFA production Decreased acetate, butyrate and total SCFAs  [24]

Amino acid metabolism Increased
Energy metabolism Increased
Carbohydrate metabolism Decreased
Lipid metabolism Decreased

PLA SCFA production Decreased acetic acid
Increased propionic acid

 [1]

Steroid degradation and xenobi-
otic degradation

More activation  [23]

Vitamin B6 metabolism Upregulated  [1]
The citric acid cycle Upregulated
Ubiquinone and terpenoid-qui-
none biosynthesis

Upregulated

Pentose and glucoronate 
interconversions

Upregulated

Terpenoid backbone biosynthesis Upregulated
Protein processing in the ER Upregulated
Cell cycle-Caulobacter Upregulated

Table 5  Effects of MPs on microbial metabolic function and pathways
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α-diversity has been previously observed in animal mod-
els following exposure to MPs [52, 53].

PE MPs, in contrast, increase α-diversity indices 
(Chao1, observed species, Simpson, and Shannon) and 
mitigated the decline caused by tetrabromobisphenol 
A (TBBPA), which higher concentrations negatively 
impacted diversity [11]. Fournier et al. (2023) reported an 
increase in α-diversity, particularly in the luminal micro-
biota [22]. The luminal microbiota is posited to be more 
sensitive to MPs compared to the mucosal microbiota. To 
make matters worse, the phthalate esters (PAEs) released 
from MPs tend to induce more disturbances in the diver-
sity. The likely explanation for the higher sensitivity of 
the lumen for MP damages is that the mucus promotes 
microbial colonization by enhancing attachment and sta-
bility, thereby reducing the disruption in the microbiota 
caused by MP exposures [54].

Moreover, there is an observable individual variation 
with the changes in microbiota diversity patterns [22, 23, 
29]. In the Tm-ARCOL model using the stools of tod-
dlers, the initial variation has been observed in donor 
stools, and the donor effect emerged as the primary fac-
tor influencing β-diversity [22]. In response to PET MPs, 
the differences in microbial responses were seen across 
individuals and intestinal compartments [29]. Certain 
conditions, for instance, thermal exposure to MPs, affect 
microbiome diversity with alterations in both α- and 
β-diversity [8]. Low α- diversity is linked to conditions 
such as obesity, IBD and chronic diseases [55].

Impact of microplastics on microbial metabolic function 
and pathways
MPs significantly impact metabolic functions of micro-
biota, which also contribute to intestinal and metabolic 
diseases [11]. The major metabolic function disrupted by 
MPs exposure is SCFA production, with specific changes 
depending on the type of MP (Table 5). Exposure to MPs 
of PE increased acetate levels but decreased propionate 
and butyrate [22]. Conversely, PET exposure results in 
the reduction of acetate (acetic acid) and butyrate levels 
[24]. PLA and PCL exposure is met with an increased 
levels of propionic acid and reductions in acetic acid as 

well as i- and n-valeric acids. PCL MPs show more inhi-
bition of SCFA production compared to PLA MPs that 
paradoxically enhance propionic acid levels. This phe-
nomenon is likely due to the abundance of Prevotella that 
promotes propionic acid production as a result of trigger 
from the PLA MPs [1].

The groups with the most significant changes at the 
phylum level, Firmicutes and Proteobacteria, are strongly 
correlated with SCFA production, metabolites produced 
through bacterial fermentation in the gut. These SCFAs 
not only influence pH of the intestinal environment but 
also exert critical physiological effects by maintaining the 
gut barrier integrity [13]. They enhance mucus produc-
tion and strengthen intestinal epithelial tight junctions, 
thereby protecting against pathogens [12]. The observed 
reduction in bacteria responsible for fiber fermentation 
and SCFA production may increase susceptibility to the 
risk of IBD. SCFAs provide immunosuppressive func-
tion by reducing inflammation through interactions with 
G-protein-coupled receptors (GPCRs) and modulation of 
T-cell activity [56, 57]. Furthermore, SCFAs serve as sub-
strates in lipid metabolism, influencing host energy bal-
ance and lipid regulation [58].

PE MPs has been shown to reduce AhR activity [21, 
22]. AhR functions as a biosensor, responding to both 
endogenous ligands such as microbial metabolites, 
and exogenous ligands, including environmental tox-
ins [59]. In a previous study [10], MPs exposure alters 
gut microbial composition, reducing the abundance of 
Akkermansia and Parabacteroides, which produce tryp-
tophan derivatives that activate AhR. This decrease in 
AhR activity allows bacteria such as Enterobacteriaceae 
and Desulfovibrionaceae to proliferate, leading to con-
ditions like leaky gut and systemic inflammation [10]. 
Moreover, PE exposure led to the overproduction of vol-
atine organic compounds (VOCs) such as hydrocarbons, 
ketones, alcohols and aldehydes and underproduction of 
esters [21, 22]. Certain VOCs, particularly hydrocarbons 
and aldehydes such as benzene and formaldehyde are 
recognized carcinogens, and chronic exposure has been 
linked to increased cancer risks [60]. VOC may impair 
immune responses by inducing inflammatory pathways, 

Type of MPs Metabolic Activity Effects References
PCL SCFA production Decreased acetic acid, i-valeric acid and n- valeric acid

Increased propionic acid
Pentose and glucoronate 
interconversions

Upregulated

Terpenoid backbone biosynthesis Upregulated
Amino acid metabolism Upregulated histidine metabolism
Epithelial cell signaling in Helico-
bacter pylori infection

Upregulated

Protein processing in the ER Upregulated
MPs (not specified) Amino acid metabolism Increased tyrosine metabolism  [8]

Table 5  (continued) 
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which increase susceptibility to infections and chronic 
diseases [61].

Exposure to MPs significantly disrupts the metabolism 
of major biomolecules, including carbohydrates, lipids, 
and amino acids. PE and PET exposure was shown to 
inhibit carbohydrate metabolism, potentially impairing 
host energy production [21, 24]. In addition, PET also 
decreased lipid metabolism, however, increased energy 
metabolism, suggesting a shift in microbial energy uti-
lization [24]. In mice, the interference of lipid metabo-
lism by MP is explained by altering gut-liver axis which 
lead to hepatic lipid accumulation and dysregulation of 
cholesterol and bile acid homeostasis. MPs disrupt bile 
acid synthesis and metabolism, potentially causing cho-
lestasis and altered bile acid profiles [62]. Amino acid 
metabolism was significantly increased with MPs expo-
sure [8, 24]. This shift could be a compensatory response 
to energy deficits caused by impaired carbohydrate and 
lipid metabolism [63]. Moreover, the enrichment path-
way analysis of fecal samples exposed to PLA and PCL 
MPs, revealed upregulation of many metabolic pathways, 
such as pentose and glucuronate interconversions, ste-
roid degradation, vitamin B6 metabolism, ubiquinone 
and terpenoid-quinone biosynthesis, proteins synthesis 
for processing in endoplasmic reticulum (ER), and signal-
ing pathways involved in H.pylori infection [1]. However, 

the exact mechanisms by which MPs interfere with these 
enriched metabolic pathways remain unclear.

Figure 2 presents a graphical summary of changes in 
the microbial metabolic functions and signaling path-
ways caused by MPs exposure.

Impact of microplastics’ properties on microbiome
MPs exposure on microbiota diversity is strongly influ-
enced by plastic-specific properties, including type, size 
and shape, in addition to the extent of exposure [64]. 
MP size in particular plays a critical role in determining 
bioaccumulation, toxicity, and its effects on gut micro-
biota shifts. Lei reported that size poses more significant 
impact on the toxicity than those of the concentration 
[65]. Peng et al., (2024) found that when exposed at the 
same concentration (166  mg per intake), for both PCL 
and PLA MPs, their sizes differed with 150 μm for PCL 
and 70 μm for PLA, resulting in distinct changes in bac-
terial diversity at both the genus and family levels, as well 
as in metabolic pathways of the bacteria [1]. However, 
the specific concentrations of MPs detected in fecal or 
intestinal samples have not been normalized across stud-
ies and more importantly, the threshold level of MPs that 
induces toxic effects has yet to be determined.

This size-dependent impact of PS has been reported 
in co-cultures of colon cancer cells, Caco-2 cells with 

Fig. 2  Summary of the impact of MPs on gut microbial metabolic pathways nad functions, emphasizing the type-specific impact of MPs and their down-
stream physiological consequences. The figure illustrates the downstream effects of MPs (e.g. PE, PCL, PLA, PET) in the GI tract following ingestion. [Red 
arrows (↑/↓) indicate increases or decreases in microbial species, metabolic output, or host response. Blue rounded boxes label specific MP types associ-
ated with observed effects. Green rounded boxes represent specific microbial taxa that are either increased or decreased in response to MP exposure.] 
(Fig. 2 was created using Biorender)
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HT29-MTX-E12 cells, highlighting that the toxicity of 
MPs is strongly dependent on their properties [66]. While 
small particle size MPs easily accumulate, they exhibit 
minimal impact on microbial growth. Conversely, larger 
particles, show lower toxicity, likely due to their inability 
to cross cell membranes, thus limiting their interaction 
with biological systems [67].

Conclusion
This systematic review highlights the growing con-
cern over MP exposure as an emerging environmen-
tal risk factor in human gut microbiome health. Across 
studies reviewed, MPs were consistently associated 
with microbial dysbiosis, reduced microbial diversity, 
impaired SCFA production, and altered immune and 
metabolic pathways. These disruptions carry significant 
implications for intestinal health, potentially contribut-
ing to chronic inflammation, metabolic disorders, and 
increased disease susceptibility.

Despite these important findings, several limitations 
constrain the generalizability of current evidence to 
the preliminary state of research in this emerging issue. 
There is a lack of MP dosing across studies, and substan-
tial variation exists in experimental parameters including 
the polymer type, particle size and duration of exposure. 
This lack of uniformity limits comparability and the syn-
thesis of consistent conclusions. Furthermore, most 
available studies rely on in vitro simulations using human 
fecal samples rather than clinical data from human sub-
jects, restricting the direct applicability of results. It is 
worth mentioning that the limited number of included 
studies, primarily conducted in China with a few from 
other countries, restricts the ability to draw comprehen-
sive population-level or region-specific conclusions.

Moving forward, a more comprehensive understand-
ing of MPs’ effects requires careful attention to meth-
odological approaches. Studies are encouraged to adopt 
standardized exposure protocols that reflect realistic 
environmental concentrations rather than relying solely 
on estimated daily intake levels. The long-term cumula-
tive effects of MPs remain poorly understood, as exist-
ing studies predominantly focus on short-term exposure. 
Another focus should lie in the absence of well-defined 
threshold levels of MP toxicity, which are essential for 
determining safe exposure limits. This is particularly con-
cerning given the chronic and pervasive nature of MP 
contamination. Researchers should also consider real-
world exposure scenarios, such as the combined effects 
of MPs with other environmental pollutants, dietary hab-
its and host-specific variables. While the findings high-
light the significant disruption of the gut microbiome 
caused by MP exposure, more comprehensive studies are 
required to fill these gaps and develop strategies to miti-
gate the rising threat of MP contamination.
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