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Abstract

Global plastic waste production remains a critical environmental issue. Microplastics (MPs), plastic particles less than
5 mm, are now pervasive across ecosystems. Humans are exposed to MPs via ingestion, inhalation, and dermal
contact raising concerns about their health impacts. This systematic review investigates the influence of MPs on
the human gut microbiome, focusing on changes in microbial composition, diversity, and metabolic pathways
based on 12 studies identified through Scopus and PubMed following Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines. Findings show that exposure to MPs such as polyethylene (PE),
polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polylactic acid (PLA), induces gut
dysbiosis, marked by a loss of beneficial genera, and enrichment of pathogenic species. MPs also impair short-chain
fatty acid (SCFA) production, alter metabolic functions, and modulate immune pathways, contributing to intestinal
diseases, metabolic syndrome, and chronic inflammation. The extent of disruption is influenced by MP-specific
properties such as type, size, and concentration. These results suggest that MPs are emerging environmental risk
factors with tangible implications for human health. To fully understand the health concerns associated with MPs
long-term, human-relevant studies with standardized methodologies are urgently needed to define safe exposure
levels and guide policies aimed at reducing MP-related health risks.
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Introduction

The unceasing production of plastic waste remains a seri-
ous threat to environmental sustainability for decades
since the invention of plastics. Despite the introduction
of biodegradable plastics as a solution to reduce pollu-
tion, their incomplete degradation regrettably results
in greater amount of microplastics (MPs), which adds
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to their persistence in the environment [1]. MPs, plas-
tic particles less than 5 mm in diameter, are considered
persistent pollutants due to their ability to accumulate in
organisms over time and capacity for long-range trans-
port [2]. Nanoplastics (NPs), potentially derived from the
further breakdown of MPs and typically range from 1 to
100 nm in diameter are thought to exhibit more distinct
physicochemical behaviors due to their smaller size and
larger surface area.

Both MPs and NPs are found in various environ-
ments, including air, water, soil, household products, and
food leading to unavoidable human exposure through
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ingestion, inhalation, and skin contact [3]. Alarmingly,
MPs and NPs are known to be present and accumulated
in human tissues including the lungs, placenta, feces,
and blood [4, 5]. These findings raise urgent concerns
about their potential impact on human health. In fact,
this widespread exposure has been associated with the
increased risk of several acute and chronic health con-
ditions, including inflammatory bowel disease (IBD),
infertility, diabetes, and neurodegenerative disorders.
Among the known exposure routes, food consumption
is considered the primary source of MPs. Moreover, MPs
contamination in drinking water systems is widespread.
Due to its high daily intake volume and consistent con-
tamination across both tap and bottled sources, it repre-
sents a critical and unavoidable pathway for chronic MP
exposure in humans [6, 7]. Once ingested, MPs can be
absorbed through the gastrointestinal (GI) tract, disrupt-
ing gut microbiota by altering dietary habits, microbial
metabolism, and immune responses [8].

The human microbiome is a diverse community of
microorganisms residing in different parts of the body
sites, including the skin, oral cavity, reproductive system,
and gut. Due to its critical role in health and disease, the
gut microbiome has drawn the most scientific attention
[9]. The gut microbiome plays a crucial role in human
physiology, regulating immune responses, metabolism,
and intestinal integrity. Disruptions in microbial compo-
sition also known as dysbiosis, have been linked to intes-
tinal barrier dysfunction and metabolic disorders. One
essential role of the gut microbiome is the fermentation
of dietary components, which leads to the production of
key metabolites such as short-chain fatty acids (SCFAs)
and aryl hydrocarbon receptor (AhR) ligands s [10, 11].
These metabolites are known to support intestinal barrier

integrity and modulate immune responses, providing evi-
dence for its influence on GI and systemic health [12, 13].

As aforementioned, ingested MPs could interact with
the intestinal environment before excretion, potentially
causing toxic effects on the gut [14].While several stud-
ies have reported the detection of MPs in human feces [4,
5], a critical lack remains in synthesizing and analyzing
how MPs affect hut microbiota composition, diversity
and function specifically in humans. Existing reviews
have largely centered on environmental contamination or
findings from animal models, without addressing human-
relevant microbiome alterations. The studies in mam-
mals and aquatic organisms consistently demonstrated
that MPs, such as polystyrene (PS), polyethylene (PE),
polyvinyl chloride (PVC), and polyethylene terephthal-
ate (PET), accumulate in the intestinal tract, leading to
conditions such as IBD, irritable bowel syndrome (IBS),
and colitis [1, 15]. PS MPs, mainly has also been shown
to disrupt gut microbial composition and induce hepatic
lipid metabolism disorders in mice, suggesting gut-level
toxicity [16]. Segment-specific intestinal damage espe-
cially in the colon has been linked to, reduced microbiota
diversity and impairing nutrient metabolism [17]. Expo-
sure to MPs worsened colitis, leading to shorter colon
length, increased inflammation, reduced mucus secre-
tion, thereby increasing the risk of colorectal cancer. MPs
have been increasing suggested as potential environmen-
tal drivers of rising early-onset colorectal cancer rates
[18, 19]. Despite this growing concern, no study to date
has analyzed how specific types of MPs, affect the human
gut microbiome and there is also a lack of synthesized
evidence on the biological mechanisms by which MPs
influence microbial communities.
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This systematic review aims to examine the effects
of MPs on the human gut microbiome, focusing on
changes in microbial composition at the phylum, family,
and genus levels, along with the alterations in microbial
diversity and richness. It also looks into how MPs disrupt
microbial functions and metabolic pathways. It highlights
the health implications of MP-induced dysbiosis and
identifies consistent microbial patterns. Furthermore,
the review assesses how MP-specific properties such
as size, shape, and polymer type influence microbiome
responses, emphasizing the importance of additional
research to address gaps in existing studies, providing
a critical foundation for future risk assessment and tar-
geted research for more understanding of MPs’ impact
on human health.

Methodology

This systematic review was conducted in adherence to
the guidelines outlined in the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
framework. PRISMA offers a structured and transparent
approach to identifying, selecting, and synthesizing rele-
vant research, ensuring the reliability and generalizability
of the findings.

The literature search was conducted in July 2024 using
two major scientific databases, Scopus and PubMed using
the following search string “(microplastic OR nanoplas-
tic) AND (human) AND (microbiome* OR microbiota*
OR microbiomic*)’;, designed to identify relevant studies,
pertaining to the impact of micro- and nano-plastics on
the human gut microbiome. No publication date restric-
tions were imposed, thereby ensuring the inclusion of all
pertinent publications. The initial search resulted in a
total of 320 records, with 235 from Scopus and 85 from
PubMed, covering studies published between 2021 and
May 2024.

Predefined inclusion and exclusion criteria were
applied to ensure an unbiased screening process. To
focus on original data and findings, only primary research
articles were included. This excluded secondary publica-
tions such as reviews and book chapters to avoid duplica-
tion of findings that are potentially already identified in
those secondary publications. Second, the language of
publication was restricted to English to mitigate language
barriers and potential bias associated with translation.
Finally, all studies included had to directly address the
impact of MPs and nanoplastics (NPs) on the human gut
microbiome. Hence, studies outside the scope of this spe-
cific human health concern or those using animal models
were excluded.

To expedite the screening process and ensure effi-
ciency, initial filtering was conducted within each data-
base, i.e. Scopus and PubMed, using their built-in filters
to eliminate non-primary research and non-English

Page 3 of 18

studies. Following this initial filter, the search results
from both databases were exported to EndNote 21, a
reference management software, to identify and remove
duplicate entries. Next, titles and abstracts were screened
against the predefined inclusion and exclusion criteria.
This ensured only English-language primary research
studies that investigating the effects of MPs and NPs on
the human gut microbiome were advanced for full-text
evaluation. A total of 18 studies met these criteria and
were retrieved for full-text evaluation. A full-text review
of these 18 studies resulted in the exclusion of 6 addi-
tional studies that were either review articles or utilised
animal models.

In the selection process, human cohort studies due to
their higher external validity and direct relevance were
prioritized. In vitro and in silico models were included
only when they offered mechanistic insights that comple-
mented findings of human studies. The quality of obser-
vational studies was evaluated using the Risk Of Bias In
Non-randomized Studies— of Interventions (ROBINS-I)
tool. Formal risk-of-bias assessments were not applied
to in vitro or in silico studies; however, their method-
ological limitations were acknowledged and considered
during the synthesis and interpretation of results. Ulti-
mately, this selection process yielded 12 high-quality
studies for inclusion in this systematic review. These
comprised cross-sectional observational studies (n=5)
and in vitro simulated digestion models using human-
derived samples (n="7). Given the involvement of human
participants or their biological materials, ethical approv-
als and informed consent were reported in most studies
(n=8). Two studies stated that ethical approval was not
required under their national regulations for sample use
(n=2), while two studies (n=2) did not provide informa-
tion regarding ethical oversight. Figure 1 represents a
flow diagram using PRISMA protocol that summarizes
our screening processes to obtain the 12 studies for our
systematic review.

Results and discussion

Numerous studies have shown the harmful effects of MPs
exposure in tissue cultures and animal models. However,
direct evidence of its impact on human health remains
lacking. Recent research has outlined the presence of
MPs in various parts of the human body [20]. Extensive
animal studies have shown that MPs exposure disrupts
gut microbiota and causes dysbiosis [15].

This systematic review examines the impact of MPs
exposure on microbiota composition at the phylum, fam-
ily, and genus levels. Most of the studies reviewed utilize
fecal samples, which are subsequently analyzed in in vitro
models designed to mimic the human gastrointestinal
system [1, 21-24]. A smaller number of studies focus on
meconium samples [25]. The final included studies that
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Fig.1 PRISMA flow diagram of this systematic review. The diagram illustrates the study selection process in accordance with the PRISMA 2020 guidelines.
The flowchart presents the number of records (n=320) identified through database searching and other sources, the number of duplicates removed, the

records screened, assessed for eligibility, and the final number of studies (n=

12) included in the qualitative and/or quantitative synthesis. The reasons for

exclusion at each stage are documented to ensure transparency of the selection process

met the inclusion criteria, particularly those focusing on
human subjects or using human-derived samples, were
geographically limited. Most studies originated from a
small number of countries, including China (n=7), fol-
lowed by Spain (n=2), France (n=2), and Indonesia
(n=1), reflecting the narrow geographic distribution of
current human-relevant research on MP-microbiome
interactions. China’s prominence in MP research is
closely tied to its status as a major plastics producer and
its central role in global plastic waste management. Stud-
ies frequently report high MP levels in China’s inland
waters, particularly in densely populated and indus-
trialized regions, likely driving the volume of research

output in this area [26, 27]. The key characteristics of
the included studies analyzing the impact of MPs on the
human gut microbiome are summarized in Table 1.

Impact of microplastics on microbiota composition

At the phylum level, gut bacterial composition varies
across intestinal compartments, as outlined in Table 2.
Microbiome analysis from fecal samples, conducted using
simulated in vitro GI models, show distinct increases and
decreases in specific phyla. PET were associated with
shifts in bacterial communities, with increases in phyla
such as Firmicutes, Synergistetes, and Desulfobacterota,
alongside reductions in Proteobacteria and Bacteroidetes
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Table 2 Effects of MPs exposure on human gut Microbiome at the phylum level
Type of MPs MP concentration/ Sample/ Effect on bacteria References
size Model Increase Decrease
PET 166 mg/intake Fecal (in vitro Gl simulator model) AC compartment: AC compartment: [29]
Firmicutes Proteobacteria
Desulfobacterota Bacteroidetes
TC compartment: TC compartment:
Synergistetes Bacteroidetes
Proteobacteria DC compartment:
Desulfobacterota Bacteroidetes
DC compartment:
Desulfobacterota
Synergistetes
MPs (not specified) Detected concentration - Fecal Actinobacteria Bacteroidetes [8]

Exposure group:

24.650 items/g

Control group:

19.645 items/g
Post-exposure:

9.805 items/g

(particle size —20-500 um)

in all compartments - ascending colon (AC), descend-
ing colon (DC) and transverse colon (TC) compartments
[29]. Moreover, exposure to a mixture of MPs was asso-
ciated with an increase in Actinobacteria and a decrease
in Bacteroidetes [8]. Notably in human, Firmicutes and
Bacteroidetes are the main constituents of gut micro-
biota, along with smaller proportions of Proteobacteria
and Actinobacteria. The disproportion of these microbial
groups could potentially lead to gastrointestinal issues,
immune disorders, neurological conditions and disrup-
tions in energy metabolism [30]. MPs may exacerbate this
imbalance by as vectors for pathogens and pollutants that
accumulate in the GI tract, disturbing the microbial com-
munities [31].

The Firmicutes/Bacteroidetes ratio, with increased Fir-
micutes and reduced Bacteroidetes have been found in
obesity, and other metabolic diseases [30, 32]. However,
Firmicutes play role in fermenting dietary fibers into
SCFAs, strengthening the intestinal barrier and reducing
inflammation [33], whereas the reduction of Bacteroide-
tes potentially lead to reduced SCFA production, and
adverse effects on gut health [34]. Moreover, a decrease
in Bacteroidetes has been observed in individuals with
IBD [35]. As Bacteroidetes are significant producers of
SCFAs, and their reduction can compromise the func-
tions of SCFA, leading to increased intestinal permeabil-
ity and inflammation, that potentially develop into IBD
[36]. Both phyla are important for immunomodulation,
as their decline in numbers will likely result in systemic
health issues, such as metabolic syndrome and autoim-
mune disorders. Another phylum of emerging inter-
est, Synergistetes are part of the healthy gut and vaginal
microbiome, their overgrowth may transition into oppor-
tunistic pathogens [37]. Desulfobacterota are known for
their ability to produce hydrogen sulfide (H,S), which in

controlled amounts supports intestinal health. However,
increased proportion of various phyla could alter micro-
bial ecosystems by consuming hydrogen and influence
metabolic pathways, which could potentially be impli-
cated in inflammation and childhood nutrition [38].
Increased H,S has resulted in various GI issues, including
constipation, diarrhea and IBS [39].

At the family level, MP exposure significantly alters
gut bacteria with specific effects depending on the type
of MP. For PE, at a concentration of 21 mg of MPs per
day, studies using Tm-ARCOL (Toddler mucosal arti-
ficial colon) and adult M-ARCOL models revealed
increased abundance of families such as Acidaminococ-
caceae, Dethiosulfovibrionaceae, Enterobacteriaceae,
Moraxellaceae, Oscillospiraceae, and Planococcaceae
in both luminal and mucosal phases. In contrast, fami-
lies like Monoglobaceae, Rikenellaceae, Tannerellaceae,
and Lachnospiraceae showed decreasing trends [21, 22].
Exposure to polycaprolactone (PCL) led to an increase
in Selenomonadaceae, while families such as Bifidobac-
teriaceae, Oscillospiraceae, Lactobacillaceae, Lachno-
spiraceae, Peptostreptococcaceae, Enterococcaceae, and
Desulfovibrionaceae were significantly reduced. Simi-
larly, exposure to polylactic acid (PLA) MPs resulted
in an increase in Prevotellaceae, but reductions were
observed in families like Bifidobacteriaceae, Oscillospi-
raceae, Lactobacillaceae, and Rikenellaceae [1]. The find-
ings are also summarized in Table 3.

Based on the findings from our literature compila-
tion, many of the bacterial families affected by MP expo-
sure, such as Acidaminococcaceae, Lactobacillaceae,
Lachnospiraceae, Peptostreptococcaceae, and Oscillo-
spiraceae, belong to the phylum Firmicutes [40]. Entero-
bacteriaceae, Moraxellaceae, and Sutterellaceae are part
of the phylum Proteobacteria [40—42]. Families such as
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Prevotellaceae, Rikenellaceae, and Tannerellaceae belong
to the phylum Bacteroidetes [43]. Lastly, Desulfovibrio-
naceae and Dethiosulfovibrionaceae are part of the phy-
lum Desulfobacterota [38]. The changes observed in
bacterial families upon MP exposure all belong to phy-
lum groups, which also exhibited shifts at the phylum
groups.

Among the bacterial families, certain families such
as Desulfovibrionaceae, Dethiosulfovibrionaceae and
Enterobacteriaceae are recognized as pathobionts [21,
22]. The Dethiosulfovibrionaceae family has been asso-
ciated with colorectal cancer, while Enterobacteriaceae,
which includes well-known enteric pathogens of Esch-
erichia, Shigella, Campylobacter, and Salmonella, has
been associated with IBS and IBDs, such as Crohn’s dis-
ease and ulcerative colitis [44]. It contributes to intestinal
inflammation by producing pro-inflammatory molecules
and disrupting gut barrier function [42, 45]. Interest-
ingly, Enterobacteriaceae are the major carriers of antibi-
otic resistance genes, one particular is the resistance to
a major group of antibiotics, the carbapenems [46]. The
relationship between IBD and antibiotic resistance genes
still remain a subject of intrigue for the researchers.

At the genus level, MPs exposure induces changes in
bacterial composition, with genera showing increases
and decreases depending on the type. It has been
observed that increases in Bacteroides and Clostridium
has been associated with the exposure to most types of
MPs detected across fecal and meconium samples [20,
25]. Clostridium can degrade PE, suggesting its ability
to adapt and thrive in its presence. However, excessive
growth of Clostridium can result in diarrhea and the pro-
duction of intestinal toxins, posing serious health risks
[11]. Studies also report an increased abundance of gen-
era associated with inflammatory responses, including
Streptococcus, Treponema, Escherichia-Shigella, Biloph-
ila, and Porphyromonas. Meconium samples exposed
to polyamide (PA) MPs, showed a rise in Treponema,
Escherichia-Shigella, Bacteroides, and Clostridium [25].
The observed rise in in Bacteroidetes species following
exposure to PA MPs may be attributed to the specific
physicochemical properties of PA, although the exact
mechanisms remain ambiguous. In this case, the meco-
nium samples were collected immediately after birth
using a plastic-free and sterile protocol, suggesting that
MPs likely entered the fetal environment through trans-
placental transfer from the maternal circulation [47, 48].
This may be explained by the fact MPs elicit inflamma-
tory responses and oxidative stress in maternal tissues,
causing the increased placental permeability could facili-
tate the translocation of MPs, along with any adsorbed
pathogens or pro-inflammatory mediators [48]. MPs have
been observed to accumulate in fetal lungs, as reflected
in meconium [49], which may be reflected in meconium

Page 10 of 18

aspiration syndrome (MAS), although this association
warrants further investigation. Escherichia-Shigella and
Bilophila, particularly Bilophila wadsworthia, are asso-
ciated with pro-inflammatory effects, as B. wadswor-
thia promotes T-helper type 1 (TH1)-mediated immune
response and potentially exacerbates colitis. These bacte-
ria have been implicated in the pathogenesis of diseases
such as IBD, colorectal cancer, and coronary artery dis-
eases [29].

MP exposure in meconium samples also increases the
prevalence of Porphyromonas and Streptococcus, both of
which are often implicated in pathogenic conditions [25].
A similar effect was observed in fecal samples exposed
to PET MPs, abundance of Bilophila elevated across all
intestinal compartments (AC, DC and TC) examined
[29]. MPs exposure also led to an increase in Faecalibac-
terium and Bifidobacterium genera which are typically
considered the markers of gut health. Under a balanced
condition, these bacteria have the potential to mitigate
inflammatory and metabolic diseases [14, 23]. However,
an overgrowth of Faecalibacterium contributes to the
development of numerous gut-related disorders, includ-
ing Crohn’s disease in children [50].

In contrast, MPs exposure has been shown to reduce
beneficial probiotic bacteria, notably Lactobacillus. Lac-
tobacillus species exhibit properties through the pro-
duction of antimicrobial compounds, including organic
acids, hydrogen peroxide, diacetyl, and bacteriocins.
Studies have demonstrated the efficacy of Lactobacil-
lus against a range of pathogens, such as Staphylococcus
aureus, Listeria monocytogenes, Shigella flexneri, Kleb-
siella pneumoniae [11]. Reductions in other health-
promoting genera, such as Blautia, Parabacteroides,
Alistipes and Pelomonas have also been observed fol-
lowing MP exposure [14, 25, 29]. Parabacteroides and
Alistipes are of particular interest due to their reported
protective roles against inflammation, metabolic disor-
ders, colitis, and IBS [33, 51]. A summary of the observed
changes in bacterial composition, including shifts in spe-
cific genera and their abundance in response to MPs is
presented in Table 4.

Impact of microplastics on microbiota diversity and
richness

Our findings reveal that the MPs exert varying effects on
the a-diversity and richness of microbiota with differ-
ent types of MPs. PET MPs reduce a-diversity indices,
such as Observed species and Shannon index, indicat-
ing a decline in microbial diversity [29]. PVC MPs were
also negatively correlated with Chaol and Observed
species indices [14]. PS MPs, particularly in meconium
microbiota, were negatively related to the Chaol index
[25]. Similarly, PCL and PLA MPs significantly reduced
gut microbiota a-diversity [1]. This trend of decrease in
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Table 5 Effects of MPs on microbial metabolic function and pathways

Page 13 of 18

Type of MPs Metabolic Activity Effects References
PE SCFA production Increased acetate [22]
Decreased Propionate and butyrate
AhR activity Less activation [21]

Volatolomics (VOCs production)

Carbohydrate metabolism

Bile acid synthesis

PET SCFA production
Amino acid metabolism
Energy metabolism
Carbohydrate metabolism
Lipid metabolism

PLA SCFA production

Steroid degradation and xenobi-
otic degradation

Vitamin B6 metabolism

The citric acid cycle

Ubiguinone and terpenoid-qui-
none biosynthesis

Pentose and glucoronate
interconversions

Terpenoid backbone biosynthesis
Protein processing in the ER
Cell cycle-Caulobacter

Overproduced 7 hydrocarbon compounds
(1) Pentane, 3-methyl-
(2) Cyclopentane, 1,1,3-trimethyl-

(3) 1-heptene, 2, 4-dimethyl-

(4) Heptane, 2,3-dimethyl-

(5) Methyl C9-alkane - RI 814

(6) Methyl C9-alkane - RI 821

(7) Methyl C9-alkane - RI 861

2 ketones

(1) 2-heptanone

(2) 2-heptanone, 4-methyl-

2 alcohols

(1) 1-hexanol

(2) 1-heptanol

2 aldehydes

(1) Heptanal

(2) Octanal

Underproduced 8 esters of propanoic acid, ethyl ester and
butanoic acid

Increased abundance of 3 hydrocarbons [21]
(1) pentane, 3-methyl-

(2) cyclopentane, 1,1,3- trimethyl-

(3) 1-heptene, 2,4-dimethyl-

1 alcohol

(1) 3-nonyn-2-ol

1 Nitrogen compound

(1) Indole, 3-methyl-

Decreased pentose phosphate pathway

Inhibited fructose and mannose metabolism

Decreased

Decreased acetate, butyrate and total SCFAs [24]
Increased

Increased

Decreased

Decreased

Decreased acetic acid [1]
Increased propionic acid

More activation [23]

Upregulated [1]
Upregulated
Upregulated

Upregulated

Upregulated
Upregulated
Upregulated
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Table 5 (continued)
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Type of MPs Metabolic Activity Effects References
pPCL SCFA production Decreased acetic acid, i-valeric acid and n- valeric acid
Increased propionic acid

Pentose and glucoronate Upregulated

interconversions

Terpenoid backbone biosynthesis  Upregulated

Amino acid metabolism Upregulated histidine metabolism

Epithelial cell signaling in Helico- ~ Upregulated

bacter pylori infection

Protein processing in the ER Upregulated
MPs (not specified) Amino acid metabolism Increased tyrosine metabolism [8]

a-diversity has been previously observed in animal mod-
els following exposure to MPs [52, 53].

PE MPs, in contrast, increase o-diversity indices
(Chaol, observed species, Simpson, and Shannon) and
mitigated the decline caused by tetrabromobisphenol
A (TBBPA), which higher concentrations negatively
impacted diversity [11]. Fournier et al. (2023) reported an
increase in a-diversity, particularly in the luminal micro-
biota [22]. The luminal microbiota is posited to be more
sensitive to MPs compared to the mucosal microbiota. To
make matters worse, the phthalate esters (PAEs) released
from MPs tend to induce more disturbances in the diver-
sity. The likely explanation for the higher sensitivity of
the lumen for MP damages is that the mucus promotes
microbial colonization by enhancing attachment and sta-
bility, thereby reducing the disruption in the microbiota
caused by MP exposures [54].

Moreover, there is an observable individual variation
with the changes in microbiota diversity patterns [22, 23,
29]. In the Tm-ARCOL model using the stools of tod-
dlers, the initial variation has been observed in donor
stools, and the donor effect emerged as the primary fac-
tor influencing B-diversity [22]. In response to PET MPs,
the differences in microbial responses were seen across
individuals and intestinal compartments [29]. Certain
conditions, for instance, thermal exposure to MPs, affect
microbiome diversity with alterations in both a- and
B-diversity [8]. Low a- diversity is linked to conditions
such as obesity, IBD and chronic diseases [55].

Impact of microplastics on microbial metabolic function
and pathways

MPs significantly impact metabolic functions of micro-
biota, which also contribute to intestinal and metabolic
diseases [11]. The major metabolic function disrupted by
MPs exposure is SCFA production, with specific changes
depending on the type of MP (Table 5). Exposure to MPs
of PE increased acetate levels but decreased propionate
and butyrate [22]. Conversely, PET exposure results in
the reduction of acetate (acetic acid) and butyrate levels
[24]. PLA and PCL exposure is met with an increased
levels of propionic acid and reductions in acetic acid as

well as i- and n-valeric acids. PCL MPs show more inhi-
bition of SCFA production compared to PLA MPs that
paradoxically enhance propionic acid levels. This phe-
nomenon is likely due to the abundance of Prevotella that
promotes propionic acid production as a result of trigger
from the PLA MPs [1].

The groups with the most significant changes at the
phylum level, Firmicutes and Proteobacteria, are strongly
correlated with SCFA production, metabolites produced
through bacterial fermentation in the gut. These SCFAs
not only influence pH of the intestinal environment but
also exert critical physiological effects by maintaining the
gut barrier integrity [13]. They enhance mucus produc-
tion and strengthen intestinal epithelial tight junctions,
thereby protecting against pathogens [12]. The observed
reduction in bacteria responsible for fiber fermentation
and SCFA production may increase susceptibility to the
risk of IBD. SCFAs provide immunosuppressive func-
tion by reducing inflammation through interactions with
G-protein-coupled receptors (GPCRs) and modulation of
T-cell activity [56, 57]. Furthermore, SCFAs serve as sub-
strates in lipid metabolism, influencing host energy bal-
ance and lipid regulation [58].

PE MPs has been shown to reduce AhR activity [21,
22]. AhR functions as a biosensor, responding to both
endogenous ligands such as microbial metabolites,
and exogenous ligands, including environmental tox-
ins [59]. In a previous study [10], MPs exposure alters
gut microbial composition, reducing the abundance of
Akkermansia and Parabacteroides, which produce tryp-
tophan derivatives that activate AhR. This decrease in
AhR activity allows bacteria such as Enterobacteriaceae
and Desulfovibrionaceae to proliferate, leading to con-
ditions like leaky gut and systemic inflammation [10].
Moreover, PE exposure led to the overproduction of vol-
atine organic compounds (VOCs) such as hydrocarbons,
ketones, alcohols and aldehydes and underproduction of
esters [21, 22]. Certain VOCs, particularly hydrocarbons
and aldehydes such as benzene and formaldehyde are
recognized carcinogens, and chronic exposure has been
linked to increased cancer risks [60]. VOC may impair
immune responses by inducing inflammatory pathways,
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Fig.2 Summary of the impact of MPs on gut microbial metabolic pathways nad functions, emphasizing the type-specific impact of MPs and their down-
stream physiological consequences. The figure illustrates the downstream effects of MPs (e.g. PE, PCL, PLA, PET) in the Gl tract following ingestion. [Red
arrows (1/1) indicate increases or decreases in microbial species, metabolic output, or host response. Blue rounded boxes label specific MP types associ-
ated with observed effects. Green rounded boxes represent specific microbial taxa that are either increased or decreased in response to MP exposure]

(Fig. 2 was created using Biorender)

which increase susceptibility to infections and chronic
diseases [61].

Exposure to MPs significantly disrupts the metabolism
of major biomolecules, including carbohydrates, lipids,
and amino acids. PE and PET exposure was shown to
inhibit carbohydrate metabolism, potentially impairing
host energy production [21, 24]. In addition, PET also
decreased lipid metabolism, however, increased energy
metabolism, suggesting a shift in microbial energy uti-
lization [24]. In mice, the interference of lipid metabo-
lism by MP is explained by altering gut-liver axis which
lead to hepatic lipid accumulation and dysregulation of
cholesterol and bile acid homeostasis. MPs disrupt bile
acid synthesis and metabolism, potentially causing cho-
lestasis and altered bile acid profiles [62]. Amino acid
metabolism was significantly increased with MPs expo-
sure [8, 24]. This shift could be a compensatory response
to energy deficits caused by impaired carbohydrate and
lipid metabolism [63]. Moreover, the enrichment path-
way analysis of fecal samples exposed to PLA and PCL
MPs, revealed upregulation of many metabolic pathways,
such as pentose and glucuronate interconversions, ste-
roid degradation, vitamin B6 metabolism, ubiquinone
and terpenoid-quinone biosynthesis, proteins synthesis
for processing in endoplasmic reticulum (ER), and signal-
ing pathways involved in H.pylori infection [1]. However,

the exact mechanisms by which MPs interfere with these
enriched metabolic pathways remain unclear.

Figure 2 presents a graphical summary of changes in
the microbial metabolic functions and signaling path-
ways caused by MPs exposure.

Impact of microplastics’ properties on microbiome
MPs exposure on microbiota diversity is strongly influ-
enced by plastic-specific properties, including type, size
and shape, in addition to the extent of exposure [64].
MP size in particular plays a critical role in determining
bioaccumulation, toxicity, and its effects on gut micro-
biota shifts. Lei reported that size poses more significant
impact on the toxicity than those of the concentration
[65]. Peng et al., (2024) found that when exposed at the
same concentration (166 mg per intake), for both PCL
and PLA MPs, their sizes differed with 150 um for PCL
and 70 um for PLA, resulting in distinct changes in bac-
terial diversity at both the genus and family levels, as well
as in metabolic pathways of the bacteria [1]. However,
the specific concentrations of MPs detected in fecal or
intestinal samples have not been normalized across stud-
ies and more importantly, the threshold level of MPs that
induces toxic effects has yet to be determined.

This size-dependent impact of PS has been reported
in co-cultures of colon cancer cells, Caco-2 cells with
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HT29-MTX-E12 cells, highlighting that the toxicity of
MPs is strongly dependent on their properties [66]. While
small particle size MPs easily accumulate, they exhibit
minimal impact on microbial growth. Conversely, larger
particles, show lower toxicity, likely due to their inability
to cross cell membranes, thus limiting their interaction
with biological systems [67].

Conclusion

This systematic review highlights the growing con-
cern over MP exposure as an emerging environmen-
tal risk factor in human gut microbiome health. Across
studies reviewed, MPs were consistently associated
with microbial dysbiosis, reduced microbial diversity,
impaired SCFA production, and altered immune and
metabolic pathways. These disruptions carry significant
implications for intestinal health, potentially contribut-
ing to chronic inflammation, metabolic disorders, and
increased disease susceptibility.

Despite these important findings, several limitations
constrain the generalizability of current evidence to
the preliminary state of research in this emerging issue.
There is a lack of MP dosing across studies, and substan-
tial variation exists in experimental parameters including
the polymer type, particle size and duration of exposure.
This lack of uniformity limits comparability and the syn-
thesis of consistent conclusions. Furthermore, most
available studies rely on in vitro simulations using human
fecal samples rather than clinical data from human sub-
jects, restricting the direct applicability of results. It is
worth mentioning that the limited number of included
studies, primarily conducted in China with a few from
other countries, restricts the ability to draw comprehen-
sive population-level or region-specific conclusions.

Moving forward, a more comprehensive understand-
ing of MPs’ effects requires careful attention to meth-
odological approaches. Studies are encouraged to adopt
standardized exposure protocols that reflect realistic
environmental concentrations rather than relying solely
on estimated daily intake levels. The long-term cumula-
tive effects of MPs remain poorly understood, as exist-
ing studies predominantly focus on short-term exposure.
Another focus should lie in the absence of well-defined
threshold levels of MP toxicity, which are essential for
determining safe exposure limits. This is particularly con-
cerning given the chronic and pervasive nature of MP
contamination. Researchers should also consider real-
world exposure scenarios, such as the combined effects
of MPs with other environmental pollutants, dietary hab-
its and host-specific variables. While the findings high-
light the significant disruption of the gut microbiome
caused by MP exposure, more comprehensive studies are
required to fill these gaps and develop strategies to miti-
gate the rising threat of MP contamination.
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PS Polystyrene
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