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Neurodegenerative diseases, which are characterized by progressive neuronal
loss and cognitive decline, are a significant concern for the aging population.
Neuroinflammation, a shared characteristic of these diseases, is implicated in
their pathogenesis. This article briefly summarizes the role of magnesium, an
essential mineral involved in numerous enzymatic reactions and critical for
neuronal bioactivity, in the context of neuroinflammation and cognitive
decline. The potential neuroprotective effects of magnesium, including the
mechanisms of neuroprotection by magnesium through maintaining neuronal
ion homeostasis, reducing inflammation, and preventing excitotoxicity, are also
described. Additionally, we discuss the impact of inadequate magnesium on
neuroinflammation and its potential as a therapeutic agent for attenuating
cognitive decline to improve neurodegenerative conditions.
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Introduction

As the global population ages, neurodegenerative diseases, which are characterized by
an ongoing loss of neuron structure and function, are becoming increasingly public health
burdens. These disorders, including dementia (along with vascular dementia), amyotrophic
lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease,
often result in cognitive decline, which severely impacts the quality of life of affected
individuals. The insidious nature of these diseases and the lack of curative interventions
highlight the need for novel therapeutic strategies. The global prevalence of dementia,
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primarily Alzheimer’s disease, is expected to double every 20 years,
reaching 81.1 million by 2040 (1, 2). Similarly, Parkinson’s disease,
the second most common neurodegenerative disorder, affects 2-3%
of the population aged >65 years (3, 4). These statistics highlight the
escalating public health challenge of neurodegenerative diseases.
Neuroinflammation, a common feature of neurodegenerative
diseases, is recognized as a critical player in the pathogenesis of
these disorders (5, 6). The inflammatory response in the brain is a
double-edged sword. Whereas acute inflammation can be beneficial
for neuronal repair and recovery, chronic inflammation can lead to
persistent neuronal damage and eventually to neurodegeneration
(7). Inflammatory processes in the brain are primarily mediated by
microglia shown in Figure 1. Upon activation, microglia release
proinflammatory cytokines, including interleukin 13 (IL-1B),
tumor necrosis factor -oo (TNF-at), IL-6, IL-18, and IL-12, reactive
oxygen species (ROS), and other neurotoxic substances, including
nitric oxide, glutamate, and prostaglandins, as well as enzymes such
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FIGURE 1

The role of magnesium in neuroinflammation. Magnesium deficiency activates microglia, resulting in the release of proinflammatory cytokines and
toxic substances, which contribute to oxidative stress. Additionally, magnesium deficiency triggers calcium influx, inducing the release of substance
P (SP), further exacerbating oxidative stress to increase neuroinflammation and ultimately contributes to cognitive decline.

Frontiers in Endocrinology

Neuromﬂam

02

10.3389/fendo.2024.1406455

as matrix metalloproteinases (MMPs) (7). Given the critical role of
neuroinflammation in neurodegeneration, modulating the
inflammatory response could reduce disease progression and is
likely to improve clinical outcomes.

We conducted a literature search using PubMed, Google
Scholar, and Scopus databases. The search was performed using
the keywords: “neuroinflammation”, “magnesium”,
function” and “neurodegenerative diseases”. We included peer-

reviewed articles in English published between 2000 and 2023.

“cognitive

Neuroinflammation
and neurodegeneration

Neuroinflammation is partly mediated by the activation of glial
cells and the release of proinflammatory mediators in the brain (8). It
plays a crucial role in the pathogenesis of neurodegenerative diseases.
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Magnesium has been shown to modulate neuroinflammation (9, 10). It
is recognized for its diverse roles in maintaining human health,
specifically in modulating inflammatory signaling pathways within
the neurological landscape. Magnesium plays a crucial role in over 600
enzymatic reactions in the human body (11). According to Workinger,
“Magnesium is a critical mineral in the human body and is involved in
~80% of known metabolic functions” (12). The concentrations of
magnesium in serum and cerebrospinal fluid (CSF) are regulated to
maintain normal physiological function. Normal serum magnesium
levels typically range from 0.75 to 0.95 mmol/L (13), while in CSF, they
range between 0.77 and 1.17 mmol/L (14). Magnesium levels are
generally higher in CSF as compared to the serum levels, perhaps due
to the active transport of magnesium across the blood-brain barrier
(15); the blood-brain barrier and the choroid plexus help regulate
magnesium levels in the CSF. In magnesium deficiency state, CSF
concentrations decline, although such reduction lags behind and is
usually less pronounced than the changes noted in plasma levels of
magnesium (15). Serum magnesium levels are crucial for
neuromuscular function, enzyme activity, and bone structure (16).
Magnesium in CSF plays a vital role in supporting various functions of
the central nervous system. Decreased CSF magnesium levels
correspond with reduced concentrations of extracellular brain
magnesium and have been associated with epilepsy (14).
Additionally, magnesium is well known for its implication in
multiple neurological disorders (17). For instance, magnesium sulfate
supplementation has been associated with reduced neuroinflammation
in a rat model of Alzheimer’s disease (10). Studies involving animal
models suggest that magnesium deficiency may trigger greater
recruitment of phagocytic cells (18). These cells could lead to
generation of more ROS, leading to the production of various
cytokines, such as TNF-o, which are key players in the inflammatory
response (18). In Alzheimer’s disease, neuroinflammation is a
pathological feature exacerbated by the accumulation of amyloid-beta
plaques through the activation of inflammatory proteins including IL-
1, IL-6, and TNF-o. Interestingly, magnesium supplementation has
been shown to reduce the levels of these proinflammatory cytokines
and increase the levels of anti-inflammatory mediators in the
hippocampus of a rat model of Alzheimer’s disease, suggesting
modulation of an inflammatory responses (19). However, due to the
complexity of the immune system in the brain, with the involvement of
microglia, astrocytes, and various cytokines and chemokines,
dampening inflammation alone might not be sufficient. Chronic
neuroinflammation results in an adverse cascade of events, causing
neuronal damage, disrupting synaptic functionality, and leading to
cognitive impairment. When this inflammatory response is sustained,
it results in the overproduction of proinflammatory cytokines. This
hyperreactive state disrupts the delicate balance of synaptic plasticity
(the ability of synapses to strengthen or weaken over time) thereby
diminishing key cognitive functions like memory retention and
learning (20).

Furthermore, prolonged inflammation triggers oxidative stress,
wherein excess free radicals lead to neurotoxicity and cellular
damage (9). This accelerates the progression of neurodegenerative
processes, as observed in diseases such as Alzheimer’s disease and
Parkinson’s disease, which are characterized by the accumulation of
disease-specific proteins in the brain, amyloid-beta and alpha-
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synuclein, respectively (21). Additionally, inflammation-induced
oxidative stress and resultant neuronal damage have been
identified as significant contributors to cognitive decline following
traumatic brain injury. These findings illustrate the detrimental link
between chronic neuroinflammation and cognitive decline.

Magnesium deficiency syndromes

Hypomagnesemia (typically below 0.61 mmol/L) can cause a
wide range of disorders and has significant neurological
consequences. The causes of hypomagnesemia can be related to
gastrointestinal disorders, including chronic diarrhea, malabsorption
syndromes (e.g., celiac disease, inflammatory bowel disease), chronic
pancreatitis, and excessive vomiting. Similarly, renal disorders,
including tubular dysfunction, diabetic nephropathy (leading to
increased urinary magnesium loss), and the use of certain
medications (e.g., diuretics, proton pump inhibitors, and some
antibiotics), can cause hypomagnesemia. Alcoholism, severe burns,
chronic stress, hyperaldosteronism, and prolonged parenteral fluid
administration without magnesium supplementation can also lead to
hypomagnesemia. Magnesium plays a key role in neural function, and
its inadequacy can lead to various neurological symptoms and
complications, including neuromuscular hyperexcitability, muscle
twitches and cramps, tremors, and seizures. Of clinical importance,
the severity of neurological symptoms often correlates with the
severity of magnesium deficiency. Patients with mild hypomagnesia
(below 0.61 mmol/L) may cause subtle symptoms, while severe
hypomagnesia (below 0.49 mmol/L) can lead to more pronounced
neurological manifestations. Severe magnesium deficiency syndromes
can be associated with cognitive and mood disturbances, headaches,
migraines, and neuropathy (numbness and tingling sensations,
particularly in the extremities). The long-term complications of
severe magnesium deficiency have also been linked to nystagmus
(involuntary eye movements) and neurodegenerative diseases,
possibly mediated by neuroinflammation. It is essential to maintain
an optimal balance of magnesium, along with other minerals and
vitamins, throughout life to support normal physiologic functions,
including neurological health (22-25).

Role of magnesium
in neuroinflammation

In the nervous system, magnesium is essential for maintaining
neuronal ion homeostasis, modulating synaptic plasticity, and
regulating neurotransmitter release (26). Kang et al. highlighted
the integral role of this mineral in managing the activity of N-
methyl-D-aspartate (NMDA) receptors (27). Their findings
emphasize the significance of this interaction in maintaining the
balance of glutamate, an excitatory neurotransmitter. If left
unchecked, glutamate can potentially tip the scale toward
inflammation. Kramer et al. suggested the aftereffects of
magnesium deficiency (28). According to their findings,
insufficient magnesium can trigger an increase in substance P, a
neuropeptide that propagates inflammatory pain (28).
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Other researchers have highlighted the complex interplay
between magnesium and calcium within neurons (9). By
restraining calcium influx into neurons, magnesium helps prevent
events that could otherwise lead to intensified inflammation and
neuronal injury. Whereas low levels of this mineral are associated
with chronic inflammation, restoring magnesium balance has been
shown to potentially counteract this condition (29). Apart from
managing neurotransmitter activity, magnesium has been found
to play a crucial role in modulating immune responses, particularly
by interacting with nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-xB) (19). This research provides compelling
evidence of the role of magnesium as an NF-kB inhibitor, a
transcription factor that regulates the expression of pro-
inflammatory cytokines, including TNF-o. and IL-6 (19). By
inhibiting NF-kB activation, magnesium can dampen the
resultant proinflammatory gene expression, thereby reducing the
overall inflammatory response within the brain (19). A meta-
analysis by Veronese et al. revealed magnesium’s anti-
inflammatory effects, marked by reductions in plasma fibrinogen
and other markers, such as tartrate-resistant acid phosphatase type
5 (TRACP 5) and tumor necrosis factor-ligand superfamily member
13B (TNFSF13B) (30). Additionally, it was also noticed that ST2
protein and IL-1 levels went down. However, the study revealed no
significant changes in IL-6 or total antioxidant capacity levels,
indicating a selective impact of magnesium on various
inflammatory markers (30). Of clinical significance, measuring
circulating ionized magnesium appears to be a more accurate
indicator of magnesium supplement bioavailability compared to
assessing total magnesium levels in plasma (31). Although the role
of magnesium in regulating neurotransmission and immune
responses is well established, it also plays a crucial role in
maintaining brain health by acting as an antioxidant. Research
findings suggest that magnesium may contribute to neutralizing
ROS to delay the progression of neurodegenerative disorders (32).

Although magnesium is not considered a component of the
antioxidant defense system, research indicates that magnesium
deficiency may increase oxidative stress markers. These markers
encompass oxidative modification products of lipids, proteins, and
DNA. Furthermore, a significant association was observed between
magnesium deficiency and weakened antioxidant defense
mechanisms. This relationship between magnesium deficiency
and oxidative stress involves multifaceted mechanisms at both the
systemic and cellular levels, including inflammation, endothelial
dysfunction, mitochondrial dysfunction, and excessive fatty acid
production (32). The studies suggest that magnesium may possess
inherent antioxidant properties, although not as a conventional
antioxidant molecule such as vitamin C or vitamin E. One notable
mechanism highlighted is magnesium’s role in stabilizing the
critical antioxidant enzyme superoxide dismutase (SOD) (32).
SOD substantially mitigates oxidative damage by converting
harmful superoxide radicals into less reactive molecular species.
This stabilization of SOD by magnesium provides a unique and
essential link between magnesium and the antioxidant defense
system (32).
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Magnesium and neuroprotection

Neuroprotective agents are substances that can potentially preserve
neuronal structure and function. These substances help prevent or slow
the progression of neurodegenerative diseases, such as Alzheimer’s and
Parkinson’s disease. These agents work through various mechanisms,
including reducing neuroinflammation, shielding against oxidative
stress, and modulating neurotransmission (33).

Many preclinical and clinical studies have suggested the potential of
magnesium as a neuroprotective agent (Figure 2). Magnesium is present
both intracellularly and extracellularly, with its intracellular presence in
compartments such as the nuclei, mitochondria, and endoplasmic
reticulum being crucial for central nervous system functions,
including synaptic connectivity (34). Intracellular magnesium can
modify synaptic properties, influencing various neuronal processes.
For instance, recent research by Liu’s group reported that presynaptic
intracellular magnesium plays a crucial role in mediating the transition
between two synaptic configurations: one involved in information
encoding and learning, and the other in information storage and
memorization (35). Research has demonstrated that magnesium can
enhance cognitive function and synaptic plasticity in animal models of
Alzheimer’s disease, offering optimism for addressing cognitive decline
(10). Additionally, a study conducted on a rat model of Alzheimer’s
disease demonstrated that magnesium sulfate supplementation
improved cognitive function, synaptic plasticity, and dendritic spine
morphology (10). Moreover, intracellular magnesium levels have been
shown to correlate with Parkinson’s disease activity. In 1-methyl-4-
phenylpyridinium (MPP+) model of Parkinson’s disease, the
application of MPP+ induced an increase in intracellular magnesium
concentration, which inhibited cellular ROS production, maintained
ATP generation, and preserved cell viability, thereby protecting neurons
from MPP+ toxicity (36). In demyelination rat models, a mutation in
the mitochondrial magnesium uptake gene disrupted magnesium
homeostasis in oligodendrocytes, affecting ATP production and
leading to axonal demyelination (37). Besides supporting myelin
formation, intracellular magnesium also enhanced oligodendrocytes’
tolerance against cellular stress, increasing resistance to a hypoxic-
ischemic injury (38). Although preclinical studies suggest that
magnesium has potential neuroprotective effects, translating these
findings to humans presents numerous challenges. Differences in
metabolism, blood—brain barrier permeability, and magnesium
bioavailability between humans and animal models may affect its
efficacy in clinical settings. Additionally, the optimal dosage, duration
of treatment, and form of magnesium (e.g, magnesium sulfate,
magnesium citrate, etc.) that are both effective and safe for humans
require rigorous clinical trials. A gap exists between demonstrating
neuroprotection under controlled laboratory conditions and achieving
measurable, meaningful outcomes in diverse human populations with
varying stages of neurological conditions. Supplementation with
magnesium sulfate increased brain magnesium contents and
attenuated memory deficits induced by intracerebroventricular
administration of streptozocin (ICV-STZ). Furthermore, magnesium
reduces tau hyperphosphorylation, a hallmark of Alzheimer’s disease,
and modulates the PI3K/Akt signaling pathway (10). Additionally,

frontiersin.org


https://doi.org/10.3389/fendo.2024.1406455
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Patel et al.

| Pro-inflammatory
Cytokines

o0

1 Anti-inflammatory
Mediators  p¢”

O

Reduce Neuroinflammation

FIGURE 2

Mg 2+

10.3389/fendo.2024.1406455

Improved Synaptic
Plasticity

Q¥

[
! ]

\

S

i

o

Increase Dendritic
Spines

Maintain Cognitive Health

Potential role of magnesium in reducing neuroinflammation and maintaining cognitive health.

magnesium supplementation has been associated with improved
neurological outcomes in models of acute brain injury, demonstrating
its relevance in central nervous system injuries (39). Moreover, in an
experimental setting involving a rat model of sciatic nerve injury, a diet
rich in magnesium was found to stimulate neurological function
recovery and enhance nerve regeneration, revealing its potential in the
treatment of peripheral nerve disorders (39). The neuroprotective effects
of magnesium are believed to stem from its capacity to regulate
neuronal calcium homeostasis, thus reducing excitotoxicity, and its
ability to modulate neuroinflammatory processes (10). The mechanisms
by which magnesium exerts its effects (e.g., calcium homeostasis
regulation, reduction in excitotoxicity, anti-inflammatory actions)
suggest that its neuroprotective properties could be applicable to a
wide range of neurological conditions. However, this also raises
questions about specificity and targeted therapy. For instance,
although reducing tau hyperphosphorylation is promising for treating
Alzheimer’s disease, it is unclear how these mechanisms interact in the
presence of other neurodegenerative disorders or comorbidities. The
multifunctional nature of magnesium might mean that its efficacy could
vary greatly depending on the specific pathological context.
Additionally, magnesium appears to influence nitric oxide production;
nitric oxide is a molecule critical for regulating cerebral blood flow and
neuronal damage.

Between 2002 and 2008, several randomized clinical trials
explored the potential of magnesium sulfate for neuroprotection in
preterm births and its effects on cerebral palsy (40). Although these
studies did not consistently achieve statistical significance for their
primary outcomes, they indicated that magnesium sulfate exposure
significantly reduced the likelihood of cerebral palsy in preterm
infants. A similar clinical study by Temkin et al, 2007 involving
499 participants aimed to test whether magnesium treatment
favorably affects outcomes in head-injured patients (41). The
results show that participants who were randomly assigned to the
lower dose magnesium group performed significantly worse than
those in the placebo group. Therefore, there was greater mortality
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with the magnesium dose than with the placebo. These findings
highlight a discrepancy between preclinical expectations and clinical
observations, suggesting that the magnesium infusions given to
patients within 8 hours of traumatic brain injury did not have a
neuroprotective effect on traumatic brain injury (41). However, other
studies have claimed that intravenous magnesium infusion and
hyperbaric oxygen therapy could reduce the clinical symptoms of
brain injury (42-44). Therefore, additional pre-clinical and clinical
research is needed to provide stronger scientific validation.

Another study investigated the combined effects of magnesium
supplementation and treadmill exercise on memory deficits in aged
rats (45); combined approach led to improved memory function in
the aged rats. In the context of central nervous system injury, a
comprehensive review highlighted the significant decrease in blood
and brain (free) magnesium concentrations following both direct
and indirect neurotrauma (46). A decrease in magnesium was
associated with neurological deficits and oxidative stress,
emphasizing the importance of magnesium homeostasis in central
nervous system injury. The administration of magnesium salts, such
as magnesium sulfate and magnesium chloride, increased brain
(free) magnesium concentrations and improved functional
outcomes (46).

The cognitive lifeline:
magnesium supplementation

Research has demonstrated that magnesium supplementation
can effectively increase extracellular magnesium levels, particularly
in the serum, which may help inhibit the aggregation of calciprotein
particles and reduce vascular calcifications, helping manage
conditions such as chronic kidney disease (47). However, the
effects on intracellular magnesium levels are more complex and
require a long-term, consistent approach to supplementation. This
slow adjustment is necessary because of the body’s regulatory
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mechanisms, which ensure that cellular functions remain stable
and effective.

In neurological disorders such as Alzheimer’s disease and
Parkinson’s disease, the neurodegenerative process has occurred
for many years, potentially reducing the responsiveness of these
disorders to the benefits of magnesium. Magnesium impacts
calcium regulation and neurotransmitter functions, which are
implicated in the pathophysiology of these diseases. In
Parkinson’s disease, abnormal magnesium levels are linked to
transporter dysfunctions, suggesting that supplementation could
stabilize these transport mechanisms and potentially slow disease
progression (48).

Conversely, in acute neurological conditions such as stroke or
traumatic brain injury, rapid onset and progression do not allow
magnesium levels to be corrected in a timeframe that influences
immediate outcomes. In these cases, emergency treatments focus on
restoring blood flow or reducing inflammation rather than
correcting metabolic imbalances. The slow cellular uptake and
regulatory effects of magnesium are less practical here because the
therapeutic window is very narrow, and the rapid physiological
changes postinjury require immediate interventions that go beyond
magnesium supplementation. Therefore, while chronic neurological
disorders could benefit from sustained magnesium research owing
to their slow progression, acute disorders would receive minimal
benefit from such research. This is due to need for immediate and
aggressive treatment in acute conditions, where the timing and
rapid action are critical.

Magnesium supplementation varies significantly in form and
administration, each tailored for specific clinical scenarios. Oral
magnesium, available in forms such as oxide, citrate, and glycinate,
is commonly used for long-term management of conditions such as
cardiovascular health and migraine prophylaxis. These forms are
preferred for their high bioavailability and ease of administration,
making them ideal for ongoing, nonemergency supplementation.
Conversely, intravenous magnesium, primarily known as
magnesium sulfate, is used in emergency settings where rapid
correction of magnesium levels is critical. This form is used in
acute medical conditions such as severe asthma, eclampsia, or
life-2threatening arrhythmias. Direct administration into the
bloodstream provides an immediate therapeutic effect, which is
crucial in life-saving interventions. Topical magnesium, often in the
form of oils or gels, is used for local applications such as muscle
soreness and cramps. While it offers the advantages of bypassing the
gastrointestinal system and avoiding some side effects associated
with oral forms, its systemic absorption and overall efficacy are
less documented.

The relationship between magnesium intake and cognitive
function is a promising research area. A study from the National
Health and Nutrition Examination Survey (NHANES) 2011 to 2014
investigated the associations of vitamin D status and magnesium
with cognitive status in older adults (49). The study found that
higher serum 25-hydroxyvitamin D [25(OH)D] levels, linked with
magnesium metabolism, were associated with reduced risk of
declining cognitive function. Specifically, an inverse association of
higher serum 25(OH)D levels with cognitive function was observed
primarily among participants with a daily total magnesium intake
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of <254 mg or <375 mg. Essential roles of magnesium in the
activation of vitamin D has been explained in various research
publications (49-53). The associations between serum 25(OH)D
and risk of mortality may be modified by the intake level of
magnesium (49). Nevertheless, some studies reportered that there
were no clear associations for cognitive function with overall
magnesium intake (54). Although not directly focused on
magnesium, research has highlighted the potential cognitive
benefits of other dietary components. For instance, a study
conducted in Qatar revealed that habitual consumption of nuts
(almonds, cashews, Brazil nuts, and walnuts), which are rich in
magnesium, is positively associated with cognitive function,
especially among older adults (55).

Furthermore, a multicenter study of hemodialysis patients
revealed a U-shaped association between serum magnesium levels
and mild cognitive impairment. Both lower and higher serum
magnesium levels were observed to increase the risk of mild
cognitive impairment in this specific population. The optimal
range of magnesium levels for the lowest risk of mild cognitive
impairment was identified as 1.12-1.24 mmol/L (56). This
discrepancy suggests that while the current reference range for
serum magnesium (0.75-0.95 mmol/L) may be adequate for typical
physiological functions, higher levels would be necessary for
optimal cognitive health. This indicates that standard ranges
might not fully address the specific needs of the brain and
neurological health. Therefore, maintaining serum magnesium
levels at the higher end of the range could provide potential
neuroprotective benefits. The empirical data from specialized
populations like hemodialysis patients delineate magnesium’s
potential as a cognitive lifeline. The observed associations
between magnesium levels and cognitive outcomes highlight the
significance of this mineral and raise questions about optimal intake
levels for cognitive preservation.

Magnesium glycinate, known for its high bioavailability,
ensures that magnesium is efficiently absorbed into the
bloodstream and, consequently, available to the body and brain
(57). Although direct studies on the impact of magnesium glycinate
on cognitive function are limited, its role in enhancing sleep quality
and reducing anxiety could indirectly support cognitive health by
promoting restorative sleep and lowering stress levels, both of which
are beneficial for cognitive performance and neuroprotection (58).
Magnesium L-threonate has been specifically studied for its unique
ability to increase magnesium concentrations in the brain, thus
directly influencing cognitive functions. Rats supplemented with
magnesium L-threonate showed a significant increase in synaptic
density in regions of the brain associated with memory and
learning, translating to a 15% improvement in maze navigation
tasks compared to controls. This study demonstrated that this form
of magnesium could reverse certain aspects of brain aging and
improve synaptic density, suggesting that magnesium has
promising implications for delaying and treating cognitive decline
associated with aging and neurodegenerative diseases (59).

The existing body of research underscores the need for more
rigorous, long-term clinical trials to provide conclusive evidence. A
study by Nosheny et al. emphasized the role of dyadic cognitive
reports and subjective cognitive decline in early Alzheimer’s disease
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research and trials (60). Although this study did not focus on
magnesium directly, it highlighted the importance of long-term
monitoring and the complexities in data interpretation, suggesting
that similar rigorous methodologies should be applied to studies on
magnesium. Furthermore, research by Planche et al. on brain
atrophy subtypes during aging indicated that certain atrophy
patterns might predict long-term cognitive decline and future
Alzheimer’s disease (61).

Conclusion

The role of magnesium in cognitive health and neuroprotection is
both compelling and complex, a testament to the sophisticated nature
of the nervous system and its interplay with essential nutrients.
Research has revealed that magnesium is a critical player in
maintaining and regulating neurobiological behaviors. In fact, its
ability to mediate inflammatory signaling pathways and inhibit the
activation of NF-xB provides a basis for its potent anti-inflammatory
effects. By reducing oxidative burden and inflammation (two
phenomena significantly contributing to cognitive decline),
magnesium helps to preserve neuronal integrity. Epidemiological and
clinical research consistently stresses the importance of adequate
magnesium levels for improving cognitive health. Studies have
shown a direct correlation between magnesium intake and cognitive
function in healthy individuals. Although existing studies have laid a
substantial foundation, they also highlight the need for further in-depth
research, including more comprehensive, long-term clinical trials to
determine the therapeutic potency of magnesium in improving
cognitive health to provide safe and compassionate patient care (62),
to reduce the burden of neurodegenerative diseases.
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