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Polygenicrisk scores (PRSs) have improved in predictive performance, but
several challenges remain to be addressed before PRSs can be implemented
® Check for updates inthe clinic, including reduced predictive performance of PRSs in diverse
populations, and the interpretation and communication of genetic results
toboth providers and patients. To address these challenges, the National
Human Genome Research Institute-funded Electronic Medical Records

and Genomics (eMERGE) Network has developed a framework and pipeline
for return of a PRS-based genome-informed risk assessment to 25,000
diverse adults and children as part of a clinical study. From an initial list
of 23 conditions, ten were selected for implementation based on PRS
performance, medical actionability and potential clinical utility, including
cardiometabolic diseases and cancer. Standardized metrics were considered
inthe selection process, with additional consideration given to strength of
evidence in African and Hispanic populations. We then developed a pipeline
for clinical PRS implementation (score transfer to a clinical laboratory,
validation and verification of score performance), and used genetic ancestry
to calibrate PRS mean and variance, utilizing genetically diverse data from
13,475 participants of the All of Us Research Program cohort to train and
test model parameters. Finally, we created a framework for regulatory
compliance and developed a PRS clinical report for return to providers and
forinclusionin an additional genome-informed risk assessment. The initial
experience from eMERGE can inform the approach needed to implement
PRS-based testing in diverse clinical settings.

Published online: 19 February 2024

Polygenic risk scores (PRSs) aggregate the effects of many genetic information hasthe potential toimprove risk estimation and manage-
risk variants and can be used to predict an individual’s genetic pre- ment*¢, particularly at younger ages’. Clinical use of PRSs may ulti-
disposition to a disease or phenotype'. PRSs are being calculatedand  mately prevent disease or enable its detection at earlier, more treatable
disseminated at a prodigious rate'?, but their developmentand applica-  stages’'°. Improved estimation of risk may also enable targeting of
tion to clinical care, particularly among ancestrally diverse individu-  preventive or therapeuticinterventionsto those most likely to benefit
als, present substantial challenges®. Incorporation of genomicrisk  from them while avoiding unnecessary testing or overtreatment'*".
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However, clinical use of Eurocentric PRSs in diverse patient samples
risks exacerbating existing health disparities™ .

PRSs for individual conditions are typically generated from
summary statistics derived from genome-wide association studies
(GWASs), which are themselves derived from populations that are heav-
ily overrepresented by individuals of Europeanancestry”. Suchscores
have been shown to have limited prediction accuracy with increasing
geneticdistance from European populations'>, PRSs can be improved
if developed and validated using multiancestry cohorts'. Clinical and
environmental data combined with monogenic and polygenic risk
measurements can improve risk prediction, as demonstrated in ref,
17 and other studies'®. Approaches for combining genomic and non-
genomic information, optimizing models for populations of diverse
genetic ancestry and across age groups, and conveying this informa-
tionto clinicians and patients have yet to be developed and appliedin
clinical care. Various forms of PRSs are available to consumers through
commercial platforms such as 23andMe, Myriad Genetics (riskScore),
Allelica, Ambry Genetics, and others, and several noncommercial
studies have explored the clinical use of PRSs in direct-to-participant
models”?; however, thereis limited information on the clinical imple-
mentation considerations of returning PRSs across multiple pheno-
types in a primary care setting”. Even before assessing the ability of
PRSs to improve health outcomes, reduce risk and enhance clinical
care, large multicenter prospective pragmatic studies are needed to
assess how patients and care providers interact with and respond to
PRSsin aprimary care setting”.

The Electronic Medical Records and Genomics (eMERGE) Net-
work is a multicenter consortium established in 2007 to conduct
genomicresearch inbiobanks with electronic medical records®*.In
2020, eMERGE embarked on a study of genomic risk assessment and
management in 5,000 childrenand 20,000 adults of diverse ancestry,
beginning with efforts to identify and validate published PRSs across
multiple race-ethnic groups (and inferred genetic ancestries) in ten
common diseases with complex genetic etiologies. The study plans
for 25,000 individuals (aged 3-75 years) to be recruited from general
healthcare system populations. Six of the ten recruitment sites are
committed to recruiting an ‘enhanced diversity cohort’, meaning
that their enrollment will target 75% of enrolled individuals belong-
ing to a racial or ethnic minority or medically underserved popula-
tion, whereas the remainder of clinical sites will target 35% minority
participants?. Enrollment is not targeted to individuals with specific
conditions, although individuals with prevalent conditions can be
included. For this prospective, pragmatic study, the primary outcome
being measured is the number of new healthcare actions after return of
the genome-informed risk assessment. This paper describes (1) iden-
tification, selection and optimization of the PRSs that are included in
thestudy; (2) calibration of ancestry for PRS estimation using a modi-
fied method developed for eMERGE; (3) development and launch of
clinicalreporting tools; and (4) an overview of the first 2,500 samples
processed as part of the study.

Results

PRS auditing and evaluation

Toselect the PRSs for clinicalimplementation, the Network conducted
amultistage process to evaluate proposed scores (Fig. 1). Aninitial set of
23 conditions was selected based on considerations including relevance
to population health (condition prevalence and heritability), strength
of evidence for PRS performance, clinical expertise in the eMERGE
Network, and data availability that would facilitate validation of the
PRS in diverse populations. These conditions were abdominal aortic
aneurysm, age-related macular degeneration, asthma, atopic derma-
titis, atrial fibrillation, bone mineral density, breast cancer, Crohn’s
disease, chronic kidney disease, colorectal cancer, coronary heart
disease, depression, hypercholesterolemia, hypertension, ischemic
stroke, lupus, nonalcoholic fatty liver disease, obesity, primary open

angle glaucoma, prostate cancer, rheumatoid arthritis, type 1diabetes
and type 2 diabetes.

Network sites completed acomprehensive literaturereview on23
proposed conditions and the corresponding PRSs. A summary of the
features of the PRS for each of the final conditions chosenis shownin
Supplementary Table 1. The collated informationincluded analytic via-
bility—a description of covariates, the age, and ancestry effects of the
original PRS model; feasibility—access to sufficiently diverse validation
datasets (genetic ancestry and age) as well as condition prevalence and
relevance to preventative care; potential clinical actionability—exist-
ing screening or treatment strategies, and magnitude (odds ratio) of
riskinthe high-risk group; and translatability—expected public health
impactacross diverse populations. Candidate PRSs wererestricted to
those that were either previously validated and published (journal or
preprint) or for which there was sufficient access to information to
develop and/or optimize new PRSs, which could then be validated.

In auditing and evaluating evidence of PRS performance, the
eMERGE steering committee considered PRSs for conditions that
could be implemented in pediatric and/or adult populations, and
for diseases with a range of age of onset (0 to >65 years of age). We
considered published single nucleotide polymorphism (SNP)-based
heritability estimates available for ten of the 23 conditions, ranging
from 3% to 58%. The majority of PRSs under consideration aimed to
identify individuals at high risk for disease; however, PRSs to predict
disease severity and drug response were also considered. Two of the
conditions, breast cancer and prostate cancer, were only considered for
implementationinindividuals whose biological sex was female or male,
respectively. Asthe eMERGE Network plans to enroll >50% participants
from underrepresented groups (including racial and ethnic minority
groups; people with lower socioeconomic status; underserved rural
communities; sexual and gender minority groups)”, emphasis was
placed on PRSs that were already available for, or could be developed
and validated in, diverse population groups.

To define population groups, study-level population descriptors
were first extracted from published literature, preprints or informa-
tion shared directly by collaborators on data used to develop and/
or optimize and/or validate PRSs. Methods for defining population
groups across studies ranged from self-reporting, extraction from
health system dataand/or analysis of genetic ancestry. We designated
four populationgroups: European ancestry (that s, study population
descriptors included European, European-American or other Euro-
peandescent diasporagroups), African (African, African American or
other African descent diaspora groups), Hispanic (that is, Hispanic,
Latina/o/x or those who have originsin countriesin the Caribbeanand
Latin America) and Asian (that is, South Asian, East Asian, South-East
Asian, Asian-American or other diaspora Asian groups).

Thirteen conditions were considered and not selected for clinical
implementation (Fig. 1). Of the six conditions dropped from considera-
tion in August 2020, low disease prevalence across ancestral groups
(age-related macular degeneration), availability of diverse genetic
datasets for validation (primary open angle glaucoma, rheumatoid
arthritis and Crohn’s disease) and the lack of a validated algorithm to
identify patients and controls based upon electronic health record
(EHR) (bone mineral density) were the driving factors. In March 2021,
five additional conditions were dropped from consideration for clini-
calimplementation based upon the progress of the development and
validation of amultiancestral PRSs (depression, ischemic stroke), the
low predictive value of candidate PRSs (hypertension, nonalcoholic
fatty liver disease) and ethical considerations around returning results
to a condition with low population prevalence (lupus).

Conditions not prioritized for implementation continued on
a ‘developmental’ pathway for further refinement. Each of the 12
conditions that were selected to move forward from the March 2021
review was assigned a ‘lead’ and ‘co-lead’ site, which worked together
to develop, validate and transfer the score to the clinical laboratory
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Fig.1| Timeline and process overview. a,Timeline and process for selection,
evaluation, optimization, transfer, validation and implementation of the clinical
PRS test pipeline. Dashed lines represent pivotal momentsin the progression of
the project with duration between these events indicated in months (mo) above
the blue arrow. Numbers in white represent the number of conditions being
examined at each stage and their fates. List of ten conditions on the right-hand
side indicates the conditions that were implemented in the clinical pipeline

for this study. b, Overview of the eMERGE PRS process. Participant DNA is
genotyped using the Illumina Global Diversity Array, which assesses 1.8 million
sites. Genotyping data are phased and imputed with areference panel derived

returned to patients

from the 1,000 Genomes Project. For each participant, raw PRSs are calculated
for each condition (PRS,,,,). Each participant’s genetic ancestry is algorithmically
determined in the projection step. For each condition, anancestry calibration
modelis applied to each participant’s z-scores based on model parameters
derived from the All of Us Research Program (Calibration) and an adjusted
z-scoreis calculated (PRS,qj,s.q)- Participants whose adjusted scores cross the
predefined threshold for high PRS are identified and a pdf report is generated.
Thereportis electronically signed after data review by a clinical laboratory
director and delivered to the study portal for return to the clinical sites.

forinstantiation and Clinical Laboratory Improvement Amendments
(CLIA) validation. Assignment of leads was based on site preference,
expertise and distribution of workload.

Selection, optimization and validation

A systematic framework was developed to evaluate the performance
for the remaining 12 PRSs, in accordance with best practices outlined
inref. 26. Anin-depth evaluation matrix of the 12 chosen conditions
can be found in Supplementary Table 2. The Network carefully con-
sidered a variety of strategies to optimize PRS generalizability and
portability. The Network prioritized validation across four ancestries
with an emphasis on African and Hispanic ancestry due to their under-
representation in genetic research and projected representation
within the study cohort. We determined that a PRS was validated if
the odds ratios were statistically significantin aminimum of two and
up to four ancestral populations: African/African American, Asian,
European ancestry, and Hispanic/Latino. The PRS Working Group
members conducted an extensive scoping exercise to identify suitable
datasets of multiple ancestries for disease-specific PRS validation.

Theseincluded datasets from early phases of eMERGE (2007-2019) as
well as external datasets such as the UK Biobank and Million Veteran
Program. These larger population-level databases had the advan-
tage of large sample sizes and less case-control ascertainment bias
(though other sources of bias can still be an issue; ‘Discussion’).
A standardized set of questions was addressed by the disease leads
thatincluded the source of discovery and validation datasets, the
availability of multiancestry validation datasets, the availability of
cross-ancestry PRSs (that is, PRS models that were developed and
validated in more than one genetic ancestry), proposed percentile
thresholds for identifying high-risk status, model discrimination
(AUC) and effect sizes (odds ratios) associated with high-risk versus
not high-risk status (Supplementary Table 2). For seven out of the
12 candidate scores, no further optimization of the original model
was performed. For five scores, an additional optimization effort
was undertaken to further refine the score performance in multiple
ancestries. Details of the optimization can be found in Supplementary
Table 3. Aspecific score optimization was applied for chronic kidney
disease. This optimization consisted of adding the effect of APOL1
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Fig. 2| Summary of the ten conditions that were implemented. ‘High-PRS
threshold’ represents the percentile that is deemed to be the cutoff fora
specific condition above which a high-PRS result is reported for that condition.
Odds ratios are reported as the mean odds ratios (square dot) associated with
having a score above the specified threshold, compared to having a score
below the specified threshold, along with 95% confidence intervals (Cls),
shown in the whiskers. The number of case and control samples used to derive
these odds ratios and Cls for each condition can be found in Supplementary

Table 2. Note that the odds ratio for obesity is not reported here, as it will be
published by the Genetic Investigation of ANthropometric Traits consortium
(Smitet al., manuscriptin preparation). ‘Number of SNPs’ represents the range
of numbers or sites included in each score. ‘Age ranges for return’ indicates the
participant ages at which a PRS is calculated for a given condition. AFIB, atrial
fibrillation; BC, breast cancer; CKD, chronic kidney disease; CHD, coronary
heart disease; HC, hypercholesterolemia; PC, prostate cancer; T1D, type 1
diabetes; T2D, type 2 diabetes.

risk genotypes to a polygenic component, which has been found to
improve risk predictions in African ancestry cohorts?.

For the final selection of PRSs to be included in the prospective
clinical study, the steering committee considered the score perfor-
mance summaries (presented by condition leads) in addition to the
actionable and measurable recommendationsrelevant for return, for
eachcondition, inthe prospective cohort. Abdominal aorticaneurysm
wasremoved fromthe clinical pathway inJune 2021 based oninability
to pullacritical risk factor from the EHR (smoking) and arelatively low
disease prevalencein Asian and Hispanic populations. Colorectal can-
cerwasremoved injune 2021 because the development and validation
ofthe PRS was not complete for allthe ancestral groups (Fig.1). For the
tenremaining phenotypes, the prospective pragmatic study required
asmallnumber of measurable primary clinical recommendations per
phenotype so that the utility of the PRS to change physician and patient
behavior can be measured. These recommendations can be found in
Supplementary Tables 2 and 4 of ref. 22.

Population-based z-score calibration
In this study, the focus is on integration and implementation of vali-
dated PRSs in clinical practice rather than novel PRS development.
Ultimately, the Network opted to balance generalizability and fea-
sibility by validating and returning cross-ancestry PRSs. However,
even with cross-ancestry scores, differences remain in the distribu-
tion of z-scores for the PRSs across genetic ancestries that can result
ininconsistent categorization of individuals into ‘high’ or ‘not high’
polygenic risk categories for a given condition®. To that end, the Net-
work chose to develop methods to genetically infer each participant’s
ancestry and calibrate the distribution of resulting z-scores through
apopulation-based calibration model*** (see below). An alternative
would have been to apply existing PRSs in available samples of differ-
entancestries and derive ancestry-specific effect estimates. However,
returning ancestry-specificrisk estimatesis challenging in real-world
implementations as it would require self-reporting of ancestry by
patients (who may not be able to provide this with accuracy) and devel-
oping multiple ancestry-specific reports for each health condition.
In addition, such PRSs would be problematic to return to patients of
mixed ancestry.

PRSs often have different means and standard deviations for indi-
viduals from different genetic ancestries. While some of these differ-
ences couldbe due totruebiological differencesinrisk, they also result

fromallele frequency and linkage disequilibrium structure differences
between populations®°. This problem is more acute when a PRS is cal-
culated for anindividual whose ancestry does not match the ancestries
used to develop the PRS. A clinically implemented PRS test to return
diseaserisk estimates, therefore, mustbe adjusted to account for these
differences due to ancestral background. A calibration method based
on principal component analysis (PCA), whichwasinitially describedin
ref. 28, was modified to model both the variance and means of scores as
ancestry dependent, as compared to the previous method (Methods),
which modeled only the means as dependent on ancestry. This modifi-
cationwas found to be necessary because some conditions were found
to exhibit highly ancestry-dependent variance, which would have led
to many more or fewer participants of certain ancestries receiving a
‘high PRS’ determination than was intended. One option considered
to create and train the calibration model was to enroll and process a
representative number of participants then pause on the return of
results while the model was trained and the older data reprocessed.
Thisstop-start approach was deemed suboptimal. Instead, the model
was fit, with permission, to a portion of the All of Us (AoU) Research
Program (https://www.researchallofus.org/) cohort genotyping data,
which allowed for continuous return of results to eMERGE partici-
pants once the study began. Of note, the All of Us Research Program
cohorts selected for both training and testing the calibration model
exhibited high degrees of genetic admixture, which would be expected
to accurately reflect the study enrollment population. Importantly,
because noancestry group ishomogenous, whenindividuals are com-
pared directly to otherindividuals in their assigned population group,
a dependence between admixture fraction and PRS can result. This
dependenceis removed by the described PCA calibration method, and
the resulting calibrated PRSs are independent of admixture fraction.
More details about the ancestry calibration can be found in Methods.

Transfer and implementation

Once the final ten conditions had been selected, condition leads
worked with computational scientists at the clinical laboratory (Clinical
Research Sequencing Platform, LLC at the Broad Institute) to transfer
the PRS models and create the sample and data-processing workflow
(Fig. 2). Condition-specific models were run with outputs from the
lab’s genotyping (Illumina Global Diversity Array (GDA)), phasing
(Eagle2 (ref. 31) https://github.com/poruloh/Eagle) and imputation
(Minimac4 (ref. 32) https://genome.sph.umich.edu/wiki/Minimac4)
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Table 1| Performance measures from the PRS pipeline validation study at the clinical laboratory

Asthma Atrial Breast Chronic Coronoary Hyperchole- Obesity/ Prostate Type1 Type 2
fibrillation cancer kidney heart sterolemia BMI cancer diabetes diabetes
disease disease
PRS accuracy: Pearson 99.3 98.6 93.0 98.3 98.2 95.9 99.5 96.4 99.5 98.8
correlation between PRS from
array and WGS (%)
PRS precision: PRS pipeline 100 100 100 100 100 100 100 100 100 100
repeatability (%)
PRS precision: PRS pipeline 0.0020 0.0010 0.0040 0.0001 0.0010 0.0050 0.0020 0.0006 0.0001 0.0010
reproducibility (z-score
standard deviation)
PRS site missingness (%) 0.69 1.20 0.32 0.69 0.46 1.20 0.70 2.97 2.97 0.70
European 1.95 2.32 2.47 3.6 23 416 3.67 12.97 4.21
(1.43-2.65) (2.07-2.61) (2.20-2.77) (31-417) (2.07-2.56) (2.59-6.44) (3.57-3.76) (7.29-20.40) (3.66-4.84)
African American  1.83 219 1.61 2.66 1.68 3.16 2.95 20.45 2.55
Odds ratio (124-270) (1.38-3.38) (1.38-1.87) (201-351) (1.39-2.03) (1.92-5.01) (260-3.30) (1077-38.83) (2.09-311)
(95%CD  Hispanic 312 227 2.05 493 216 402 nd. nd. 6.87
(1.32-744)  (1.09-4.50) (1.10-3.83) (2.46-9.89) (1.47-3.19) (2.72-5.83) (311-15.15)
Asian n.d. n.d. 222 3.81 n.d. 375 n.d. n.d. 4.58
(1.99-2.47) (1.91-7.59) (3.15-4.42) (4.00-5.23)

PRS pipeline accuracy is assessed as the Pearson correlation between scores derived from polymerase chain reaction (PCR)-free 30X whole genome sequencing (WGS) and those derived
from imputed genotyping data (GDA) in the same 70 specimens. Pearson correlation is shown in the mean correlation across all ancestry groups tested. PRS pipeline precision (repeatability)
is the measure of concordance in PRSs calculated from the same 70 specimens, run through the pipeline ten times over the course of two weeks. PRS pipeline precision (reproducibility) is
assessed using three samples, each run six times end-to-end and then compared in a pairwise manner. The z-score standard deviation is used as a measure of variability. PRS site missingness
is the percentage of genomics sites in the original score that are missing from the final imputed dataset. Odds ratios for high PRS versus not high PRS are derived from the condition-specific
cohorts and calculated by each condition group lead across the ancestries available. Odds ratio information for obesity/BMl is in preparation for publication by the Genetic Investigation of

ANthropometric Traits consortium. BMI, body mass index; Cl, confidence interval; n.d., no data.

pipelines to assess genomic site representation (see Methods for more
information on the architecture and components of the pipeline). Sev-
eralrounds of iteration between the clinical laboratory and condition
leads followed in which any issues with the pipeline were resolved and
the effect of genomic site missingness was assessed (Table 1). The final
version of theimplemented models was returned to the conditionleads
torecalculate effect sizes in the validation cohorts.

Finally, as part of the implementation of the PRS pipelines as a
clinical test in a CLIA laboratory, a validation study was performed
(see Methods for a detailed description; Table 1 summarizes some of
the results). Briefly, this study leveraged 70 reference cell lines from
diverse ancestry groups (Coriell) where 30X whole genome sequenc-
ing data were generated to form a variant truth set from which the
technical accuracy and reproducibility of imputation and PRS call-
ing was assessed. A second sample set of 20 matched donor blood
and saliva specimens was procured to assess the performance of the
pipeline with different input materials. A set of three samples, each
withsix replicates, was run end-to-end through the wet lab and analyti-
cal pipelines as an assessment of reproducibility. As a verification of
the clinical validity of the scores, cohorts of cases for eight of the ten
conditions were created using the eMERGE phase Ill imputed dataset
(available on https://anvil.terra.bio/#workspaces/anvil-datastorage/
AnVIL_eMERGE_GWAS/data (registrationrequired)). PRS performance
measures were calculated to confirm associations between scores and
conditions. Due to limitations in the eMERGE phase lllimputation (no
chromosome X, different imputation pipeline), the odds ratios from
this analysis were not included in the final reports; rather, the odds
ratios calculated in the condition-specific validation cohorts (using
thefinal clinicallab pipeline) were used (Fig. 2 and Table 1). A validation
report was created for each condition. This report was reviewed and
approved by the Laboratory Director in compliance with CLIA regula-
tions for the development of a laboratory-developed test. Personnel
were trained on laboratory and analytical procedures, and standard
operating procedures were implemented. Data review metrics were
established, sample pass/fail criteria were defined, and order and
report data-transfer pipelines were built as described in ref. 22.

Creation of pipeline for report creation, review, sign-out
andrelease

A software pipeline was built to facilitate the data review and clini-
cal report generation. Reports were created both as documents
(in pdf format) and structured data (in JSON format; asample report
isincluded in the Supplementary Information). Automated rules for
casetriage werebuiltinto the PRS calculation and reporting pipeline
to account for differences in return based on age and sex at birth for
certain conditions. Forinstance, the PRS for breast cancer is only cal-
culated for participants who report sex at birth as female; similarly,
prostate cancer scores are only generated for participants who report
sex at birth as male. Age-related restrictions were similarly coded
into the pipeline to account for study policies on return. Datareview
by an appropriately qualified, trained individual is required for high
complexity clinical testing. In the PRS clinical pipeline, this review
takes the form of a set of metrics that are exposed by the pipeline to
thereviewer. Theseinclude az-score range for each condition (passing
samples will have a score -5 <z < +5), a PCA plot per batch against a
reference sample set (visual representation of outlier samples), moni-
toring the z-score range for each control per condition (one control
oneach plate; NA12878) and flagging any samples with multiple ‘high
risk’ results for further review.

Each participant’s sampleis alsorunonanorthogonal fingerprint-
ingassay (Fluidigmbiomark) that creates agenotype-based fingerprint
for that DNA aliquot. Infinium genotyping data are compared to this
fingerprintasa primary check of sample chain-of-custody fidelity and
to preclude sample or plate swaps during lab processing. Reviewed and
approved datafora participant are processed intoa clinical report. The
text and format of this report were created during an iterative review
process by consortium work groups. For this pragmatic clinicalimple-
mentation study, two results are returned to participants: ‘high risk’ or
‘not high risk’ based on the PRS*. In the clinical report, a qualitative
framework has been developed to indicate for which condition(s) a
participanthasbeen determined to have ahigh PRS (if any). Quantita-
tive values (z-scores) are not included for any condition in the main
results panel. For breast cancer and CHD, the z-score is presented in
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Fig.3|Summary of the first 2,500 eMERGE participants processed through
the clinical pipeline. a, PCA of ancestry indicating participants with a result of
‘high PRS’ for any condition (red dots) compared to participants who did not have
ahigh PRSidentified (gray dots). b, Summary of number of high-risk conditions
found per participant. ¢, Observed numbers of high PRS called per condition
compared to the expected numbers of high PRS per condition. Pvalues are

two-sided Pvalues calculated by simulation to account for the uncertainty in the
All of Us (AoU) derived ancestry calibration parameters due to the finite size of
the AoU training cohort, and further adjusted for multiple hypothesis testing
using the Holm-Sidak procedure. Note not all participants get scored for every
condition based on age and sex at birth filters.

another section of the report for inclusion in integrated score mod-
els for those conditions. For breast cancer specifically, the provided
z-score is used with the BOADICEA® model to generate an integrated
risk that is included in the genome-informed risk assessment (GIRA),
asdescribedinref.22.

Overview of the first 2,500 clinical samples processed

Between the launchinjuly 2022 and May 2023, 2,500 participants were
processed through the clinical PRS pipeline (representing ~10% of the
proposed cohort). Of the first 2,500 participants processed, 64.5%
(1,612) indicated sex at birth as female, while 35.5% (886) indicated male.
Median age at sample collection was 51years (range: 3 years to 75 years).
Participants self-reported race/ancestry, with 32.8% (820) identifying
as ‘White (for example, English, European, French, German, Irish, Ital-
ian, Polish, etc.)’; 32.8% (820) identified as ‘Black, African American or
African (for example, African American, Ethiopian, Haitian, Jamaican,
Nigerian, Somali, etc.)’; 25.4% (636) identified as ‘Hispanic, Latino or
Spanish (for example, Colombian, Cuban, Dominican, Mexican or Mexi-
can American, Puerto Rican, Salvadoran, etc.)’; 5% (124) identified as
‘Asian (forexample, Asian, Indian, Chinese, Filipino, Japanese, Korean,
Vietnamese, etc.)’; 1.5% (38) identified as American Indian or Alaska
Native (for example, Aztec, Blackfeet Tribe, Mayan, Navajo Nation,
Native Village of Barrow (Utqiagvik) Inupiat Traditional Government,
Nome Eskimo Community, etc.); 0.9% (22) identified as Middle Eastern
or North African (for example, Algerian, Egyptian, Iranian, Lebanese,
Moroccan, Syrian, etc.); 0.8% (21) selected ‘None of these fully describe
[me_or_my_child]’; 0.7% (17) selected ‘Prefer not to answer’; 0.1% (2)
participants had incomplete data. A summary of the performance of
the first 2,500 samples and resulting high-PRS metrics are shown in
Fig. 3. In the first 2,500 participants, we identified 515 participants
(20.6%) with a high PRS for one of the ten conditions, 64 participants
(2.6%) had ahigh PRS for two conditions, and two participants (0.08%)
had a high PRS for three conditions. The remaining 1,919 participants

had no high PRS found. High-PRS participants spanned the spectrum
of genetic ancestry when projected onto principal component space
(Fig.3). Observed numbers of high-PRS assessments were largely con-
sistent with the corresponding expected numbers. The Pvaluesin
Fig.3caretwo-sided Pvalues, which are calculated takinginto account
both the finite size of the eMERGE cohort and the finite size of the
training data used to estimate the ancestry adjustment parameters.
The Pvalues are further adjusted for multiple hypothesis testing using
the Holm-Sidak procedure.

Discussion
While the predictive performance of PRSs hasimproved substantially
inrecentyears, challenges remain inensuring that PRSs are applicable
and effective in diverse populations. In particular, the vast majority of
GWASs have focused onindividuals of European ancestry, and the pre-
dictiveaccuracy of PRSs declines with increasing genetic distance from
the discovery population®***, This risks exacerbating existing health
disparities, as clinical use of Eurocentric PRSs in diverse patient samples
may not accurately reflect disease risk in non-European populations.
To address these challenges, the eMERGE Network has conducted a
multistage process to evaluate and optimize PRS selection, develop-
mentand validation. The Network has prioritized conditions with high
prevalence and heritability, existing literature, clinical actionability
and the potential for health disparities, and has developed strategies
to optimize PRS generalizability and portability across diverse popula-
tions. In particular, the Network has emphasized performance across
four major ancestry groups (African, Asian, European, Hispanic, as
reflected by self-identified race/ethnicity) and has developed a pipeline
for clinical PRS implementation, a framework for regulatory compli-
ance and aPRS clinical report.

The potential impact of PRS-based risk assessment in clinical
practiceis substantial. By enabling targeted interventions and preven-
tative measures, PRS-based risk assessment has the potential toreduce
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the burden of a range of conditions*’. Moreover, the development of
PRS-based risk assessment in diverse populations has the potential to
reduce health disparities by ensuring that clinical use of PRSs accu-
rately reflects disease risk in diverse populations.

However, challenges remain in the successful implementation
of PRS-based risk assessment in clinical practice. Participation bias
in training or validation datasets that do not accurately represent
the broader populations, for example the United Kingdom BioBank,
can lead to skewed results and reduced generalizability in PRS test
development®. Other challenges include concerns about genetic
determinism, the potential for stigmatization and the need for robust
regulatory frameworks to ensure that PRS-based risk assessment is
deployed safely and effectively. Furthermore, to have more clinical
utility, anindividual’s PRS-based risk would be calculated as age-based
absoluterisk. Challenges also remainin healthcare provider and patient
understanding and interpretation of PRS results and how to effectively
communicate theseresults. Additionally, one of the biggest challenges
isthe implementation of effective disease prevention strategies after
thereturnof theresults. Return of the results will not resultin abenefit
without effective disease prevention or early detectionstrategies. The
eMERGE Network’s work provides ablueprint for addressing these chal-
lenges, but ongoing research and evaluation will be necessary to ensure
that PRS-based risk assessment is implemented in a responsible and
effective manner. While this study will not answer all of the unanswered
challenges and questions, the results from the 25,000 subjects from the
eMERGE study will provide additional data to existing risk stratification
to model harms and benefits over patient lifetimes.

Future groups developing, transferring and implementing PRSs
intoaclinical setting could build upon the eMERGE experience. Slightly
less than half of the phenotypes originally considered for PRS develop-
ment were able to be continued through clinicalimplementation based
onvarying considerations, suggesting thata moderately high number
of phenotypes with measurable genetic contributions willbe appropri-
atefor PRS-based clinical tools. Thresholds for returning ‘high risk’ PRS
were identified by each phenotype working group based in part upon
the statistical significance between the ‘high-risk’ and ‘not high-risk’
groups. Future studies might consider standardizing the analyses
and methods used to define these thresholds. Additionally, to have
more clinical utility, anindividual’s PRS-based risk would be calculated
as an age-based absolute risk. While data for these risk assessments
are available for some phenotypes (for example, cardiovascular and
cancer), age of onset data are lacking for many clinically important
phenotypes. Finally, the standards, guidance and the development
of best practices for the integration of PRSs into clinical processes are
yettobe developed. Future studies can learn from eMERGE and other
groups' experiences will be afoundation for ongoing opportunities for
theintegration of polygenic risk predictions in clinical care settings.

In conclusion, the eMERGE Network’s work in PRS development
represents an important step forward in the implementation of
PRS-based risk assessment (in combination with other risk estimates
from monogenic testing and family history) in clinical practice.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41591-024-02796-z.
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Methods

Consent and ethical approval

The study was conducted in accordance with the Declaration of Hel-
sinki, and the central institutional regulatory board protocol was
approved by the Ethics Committee of Vanderbilt University. All par-
ticipants for eMERGE are consented, using a global primary consent
and a site-specific consent. Minors acknowledge study participation
by signing an assent (if local policy dictates) and the child’s parent/
guardiansigns a parental permission form. The Vanderbilt University
Medical Center Co-ordinating Center is the institutional review board
of record (no. 211043) for the Network’s single institutional review
board, approved in]july 2021.

For the All of Us Research Program, informed consent for all par-
ticipantsis conductedin person or through an eConsent platformthat
includes primary consent, Health Insurance Portability and Account-
ability Act authorization for research EHRs and consent for return of
genomic results. The protocol was reviewed by the Institutional Review
Board (IRB) of the All of Us Research Program. The All of Us Institutional
Review Board follows the regulations and guidance of the National
Institutes of Health Office for Human Research Protections for all
studies, ensuring that the rights and welfare of research participants
are overseen and protected uniformly.

Clinical trials registration

The eMERGE genomic risk assessment study is a registered, prospec-
tive, interventional clinical trial registered with clinicaltrials.gov
(Identifier: NCT05277116). The purpose of the study is to determine
if providing a GIRA will impact clinical actions taken by providers and
patients to manage disease risk and the propensity of participants to
develop adisease reportedinthe GIRA. For this prospective, pragmatic
study, the primary outcome being measured is the number of new
healthcare actions after return of the genome-informed risk assess-
ment. Number of new healthcare actions willbe measured by electronic
health record data and participant-reported outcomes through a
REDCap survey. Prespecified actions will include a condition-specific
composite of new encounters, clinical orders or specialty referrals
for clinical evaluation associated with the condition(s), placed by a
provider within six months of result disclosure.

Secondary outcomes are the number of newly diagnosed condi-
tions after return of the genome-informed risk assessment and the num-
ber of risk-reducinginterventions after return of the genome-informed
risk assessment (time frame: six months and 12 months post return of
results to participant).

Population group definition

Inthe score auditing and evaluation phase, condition leads cataloged
population groups used in the development or validation of given
scores from available publications, preprints or information shared
directly from collaborators. Across the initial list of evaluated scores,
methods for defining population groups included self-reporting,
extraction from health system data and/or analysis of genetic ances-
try. In the optimization phase, populations were defined using either
computational analysis alone or both computational analysis and
self-reported ancestry, as indicated in Supplementary Table 3. For
creation of the training model for PRS ancestry calibration, popula-
tions were computationally determined as described in ‘PRS ancestry
calibration overview’ below.

Populations with thatare underserved and more frequently expe-
rience health disparities include racial and ethnic minority groups;
people withlower socioeconomic status; underserved rural communi-
ties; sexual and gender minority groups; and people with disabilities.

Analytical and technical validation studies
Broad imputation pipeline overview. An imputation pipeline that
takes as an input a variant call format (VCF) file generated from a

genotyping microarray and imputes the genotypes at additional sites
across the genome was developed. The pipeline architecture and com-
position was based on the widely used University of Michigan Imputa-
tion Server, which uses a software called Eagle (https://github.com/
poruloh/Eagle) for phasingand Minimac4 (https://genome.sph.umich.
edu/wiki/Minimac4) for the imputation. The pipeline uses a curated
version of the 1,000 Genomes Project (1KG, www.internationalge-
nome.org) asthereference panel. Additional details on the imputation
pipeline canbe found at https://broadinstitute.github.io/warp/docs/
Pipelines/Imputation_Pipeline/README.

Broad curated 1KG reference panel. During the validation process, we
determined that somesitesinthe 1KGreference panel wereincorrectly
genotyped compared to the sites in matching whole genome sequenc-
ing data. To increase accuracy of the imputation and PRS scoring, we
curated the original panel by removing sites that were likely incorrectly
genotyped based on comparing allele frequencies to those reported
in gnomAD v.2 (https://gnomad.broadinstitute.org/). Documenta-
tion of this curation can be found at https://broadinstitute.github.io/
warp/docs/Pipelines/Imputation_Pipeline/references_overviewand a
publicly available version of the panel at the following Google Cloud
location (accessible via the gsutil utility): gs://broad-gotc-test-storage/
imputation/1000G_reference_panel/.

Selection of areference panel forimputation as aninput to a PRS
is an important consideration. Some reference panels (for example,
Trans-Omics for Precision Medicine (TOPMed)) have more samples
than the default used in our pipeline (that is, 1IKG). This leads to more
variants being imputed. The question is whether this would materially
change the PRSs calculated from samples imputed with the TOPMed
panel. Access to this panel computationally is restricted (and local
download prohibited) so it was deemed infeasible to implement in our
clinical production environment. The performance of anon-eMERGE
PRS (for CHD; ref. 28) using the two different reference panels was
determined for 20 GDA saliva specimens and for 42 AoU array v.1 speci-
mens. The cohort wasimputed both by the Broad imputation pipeline
with curated 1KG as the reference panel as well as on the TOPMed
imputation server with TOPMed as the reference panel. Imputed arrays
were scored by the PRS pipeline.

The PRS percentiles computed with each method are highly con-
cordant for both cohorts. The Pearson correlation coefficientis 0.996
forboth cohorts, the Pvalue of the Welch two-sample ¢-test is equal to
0.93 and 0.85 (indicating no statistical difference between the meth-
ods) for GDA and AoU v.1 cohorts, respectively.

Performance verification of the imputation pipeline. Imputation
accuracy was determined for 42 specimens that were processed
through agenotyping microarray (AoU v.1array—the precursortothe
commercial Global Diversity Array) and imputed with curated 1KG
as the reference panel where corresponding deep-coverage (>30X)
PCR-free whole genome sequencing data were used as a truth call set
to calculate sensitivity and specificity. The arrays were also imputed
onthe Michigan Imputation Server with 1KG as the reference panel.

Within the cohort, four different ancestries were represented:
non-Finnish Europeans, East Asians, South Asian (SAS), African (AFR).
Broad imputation pipeline sensitivity for SNPsis >97% and insertions/
deletions (INDELs) >95% for all ancestries. Similarly, specificity for SNPs
from the Broad imputation pipeline is above 99% and the specificity
for INDELs is >98%. See Extended Data Table 1 for a table of results.
Results were highly concordant with those returned by the remote
server at Michigan.

Performance evaluation of different input material types. To
assess the performance of specimens derived from both saliva and
whole blood, a set of 20 matched blood and saliva pairs were run
through the GDA genotyping process and the resulting VCFs were
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imputed using the Broad pipeline to be compared against results for
matched blood-derived whole genome data. The Pearson correla-
tion between sensitivity and specificity of blood- and saliva-derived
samples are equal to 100% and 100%, respectively. For the same
pairs, the Welch two-sample t-test statisticis 0.997 and 0.987, respec-
tively. There is no significant difference between the different input
sample types.

Imputation repeatability and reproducibility. Imputation pipeline
repeatability was assessed by repeating imputation of a cohort of
1,000 Global Screening Array arrays ten times over the course of two
weeks and was found to be 100% concordant. Imputation pipeline
precision (reproducibility) was also tested on technical replicates.
Three individual samples derived from saliva were each genotyped
six times, followed by an imputation in a cohort of all saliva-derived
samples. Ineachset of technical replicates, all pairs and variantsin each
pair were compared (making a total of 45 pairs for which genotypes
were compared). Reproducibility is measured using Jaccard scores.
‘Reproducibility over variants’ was calculated only over sites where at
least one of the two replicates in a pair calls a non hom-ref genotype
and was found to be 99.91% (95% C1 99.89-99.93) for SNPs and 99.87%
(95% C199.85-99.90) for INDELs. ‘Reproducibility over all sites’ was cal-
culated over allgenotypedsites, including sites genotyped as hom-ref
inbothreplicates and was found to be 100% (95% C1100-100) for both
SNPs and INDELSs.

Imputation performance as a function of variant frequency.
Because we expectaccuracy tobeimpacted by the frequency of a vari-
antinthe population (rare variants are less likely tobe in the reference
panel and therefore less accurately imputed), we further subdivided
the performance assessment by allele frequencies on two cohorts:
42 AoU v.1arrays and 20 blood-saliva pairs of GDA arrays. Accuracy
of imputation of variants as a function of population allele frequency
performed as expected, with rare variantsin the population not being
as accurately represented. Imputation is more accurate for variants
that are more frequently observed in the population (=0.1 allele fre-
quency (AF)).

Impact of genotyping array call rate on imputation performance.
The impact of call rate on the imputation was assessed by generating
a downsampled series of 42 arrays, each with call rates of 90%, 95%,
97% and 98%. Pearson correlation values for SNPs and INDELs were
calculated across bins of allele frequencies, assessed against gnomAD
common variants (AF > 0.1), for the cohorts with downsampled call
rates. Call rates below 95% were found to produce suboptimal results.
At this rate the mean R? dosage score for sites with AF > 0.1 was found
tobe 0.98% (95% C10.98-0.98) for both SNPs and INDELs compared to
0.99% for call rates of 97% and 98%.

Impact of imputation batch size on performance. Batch size effect
of the imputation pipeline was assessed by imputing and analyzing
arraysinacohortofsize1,000 (randomly chosen), ten cohorts of size
100 (nonoverlapping subsets of the 1,000 cohort) and ten cohorts of
size ten (nonoverlapping subsets of one of the 100 cohorts). Pearson
correlations of dosage scores were calculated across bins for allele
frequencies (assessed against gnomAD) for smaller cohorts versus
larger cohorts. The data show that imputation is highly correlated
across batch sizes with batches down to as few as tensamples, produc-
ingacceptable performance. The mean R? correlation of dosage scores
for sites with allele frequency greater or equal to 0.1is above 0.97 in
all casesboth for SNPs and INDELs and increases to 0.98 for the larger
studied cohorts. Increasing batch sizes produces very slightimprove-
ments in imputation but these are not significant and the choice of
imputation batchsize (above or equal to ten samples) canbe made on
practical and operational grounds.

Broad PRS pipeline overview. The PRS pipeline begins by calculating
araw score using plink2 (https://www.cog-genomics.org/plink/2.0/).
For each condition, effect alleles and weights are defined for a set of
genomic sites stored in a weights file. At each site, the effect allele
dosage observedin theimputed VCF is multiplied by the effect weight
in the weights file. The raw score is the sum of these products over all
the specified sites.

Validation of technical and analytical performance of the PRS
pipeline. For each of the ten conditions chosen by the consortium for
clinical return, a validation study was performed to assess the technical
and analytical performance as well as to verify the association between
scoreand disease risk.See Extended Data Table 2 forasummary of the
validation measures.

PRS pipeline accuracy. Accuracy of the pipeline was determined by
calculating the Pearson correlation between PRSs calculated from 70
specimens imputed from GDA array data and PRSs of corresponding
deep-coverage PCR-free whole genome sequencing data (used as a
truth call set).

Input material performance. Accuracy of PRS scoring when different
sample types (blood or saliva) are used as inputs was determined by
comparing the PRSs from matched blood and saliva pairs collected
from 20 individuals.

PRS pipeline repeatability. PRS pipeline repeatability was assessed by
running the pipeline onthe same dataset of 70 imputed GDA arrays ten
times over the course of two weeks (without call caching). Scores gener-
ated from the different processing runs were compared to determine
ifthere are any differences observed for agiven PRSwhen the pipeline
isrun at different times.

PRS pipeline reproducibility. PRS pipeline precision (reproducibility)
was assessed using three samples each run six times end-to-end and
then compared in a pairwise manner. The z-score standard deviation
isused as ameasure of variability.

PRS site representation. The SNP weight sites that are not called dur-
ing genotyping or imputation were determined. These are sites not
presentintheintersection of animputed GDA array and the reference
panel.Ideally, all sites required for PRS calculation are present either
as genotyped or imputed sites; however, in practice, a small number
of sites are not present due to differences in the data used to create
the score and the specificarray and imputation reference panel used
inthis study.

Performanceverification using eMERGE I-1ll cohort. A cohort of samples
with known phenotypicinformation was used to verify the relationship
between PRS as determined by our pipeline and disease risk. For condi-
tions where cases and controls could beidentified in the eMERGE I-111
cohort, we determined performance using metrics outlined in the
ClinGen working group recommendations?®. Specifically, we deter-
mined the PRS distributions for cases and controls, we examined the
impact of ancestry adjustment on the distributions and we examined
the relationship between observed and predicted risk. An example of
this analysis (for T2D is shown below).

The T2D weight file used for PRSs in this validation report comes
froma GWAS by Ge et al.”” where they reported that individuals in the
top 2% of the PRSsin the population have anincreased risk of develop-
ing T2D.

The T2D cohort in the eMERGE I-Ill dataset consisted of 19,145
cases and 68,823 control samples. The mean adjusted PRS for case
samples was 0.435, while the mean for control samples was —0.042.
Individuals with higher adjusted PRS scores tend to be more likely to
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develop disease (see Extended Data Fig. 1for a histogram of T2D PRSs
incases and controls).

There are some limitations to this analysis: (1) the eMERGE I-
Il dataset being used for this analysis was generated from different
array platforms and was imputed with a different pipeline including
a different version of the 1KG reference panel than the one currently
implemented; (2) the eMERGE I-1ll imputed dataset does not include
variants from chromosomes X or Y. For these reasons, the PRS disease
association analysis represents a verification of the clinical validation
performed by eMERGE condition leads rather than the quantitative
measure of the impact of the score on risk. The clinical associations
(odds ratios) that are reported on the clinical report for each condi-
tion were independently determined by eMERGE disease-specific
expertteams.

Validation of pipeline and ancestry adjustment in original case-control
cohorts. The final pipeline was made available to computational sci-
entists at each of the eMERGE disease-specific expert teams who had
accessto appropriate case-control cohorts. These groups confirmed
the performance of the final pipeline on their cohorts. The odds ratios
for each condition that are reported on the clinical reports come
from these cohorts rather than the eMERGE cohort for the reasons
described above.

PRS ancestry calibration overview

PCA method description. For a PRS, which is a sum of SNP effects
(linear weights), the central limit theorem states that the distribution
of scores in a homogenous population will tend towards a normal
distribution as the number of SNPs becomes large. When two different
homogenous populations are randomly mixed, the additive property
of the PRS leads the resulting distribution to be similarly normally
distributed, with mean and variance depending on the mean and vari-
ance of the original homogenous populations®**, We can therefore
model the distribution of the PRS as being normally distributed, with
mean and variance being functions of genetic ancestry. Practically,
we implement this as

PRS,, = N, 0%) (1)
H =0y + Z a,-PC,- (2)
a® = exp (Bo + X BiPCy), 3)

with genetic ancestry being represented by projection into principal
component (PC) space®. The a and  parameters are found by jointly
fitting themto a cohort of training data. This fit is performed by mini-
mizing the negative log likelihood:

Prs; — H; )2 @)

—loglL =Y logo; + 1/2<T
7

l

where i runs over the individuals in the training cohort, prs;is the ith
individual’sraw PRS, and 1;and g;are calculated using equations (2) and
(3) above by projecting the ith individual into PC space. Note that, due
to the simplicity of the model, overfitting is unlikely to be a problem,
and so no regularization or other overfitting avoidance technique is
implemented. Anindividual’s PRS z-score can then be calculated as

z— score = (prsg—ﬂ>, &)

where u and o have again been calculated based on the specific indi-
vidual’s projectioninto PC space. In this way, once the model has been
trained, the z-score calculation is fully defined by the fitted model

parameters, and z-scores can be calculated without needing additional
access to the original training cohort.

Generating trained models from All of Us data. Generating the
trained models consisted of three steps: (1) selecting the training
cohort; (2) imputation of the training cohort; and (3) training the
models on the training cohort. A test cohort was also generated to test
the performance of the training.

Ancestry-balanced training and test cohorts were generated
by subsampling from an initial cohort of around 100,000 All of Us
samples. For the purposes of balancing the cohort, each sample was
assigned to one of the five 1IKG super populations. Principal component
analysis was first performed on a random subset of 20,000 samples.
The 1KG samples were projected onto these principal components,
and asupportvector machine was trained on 1KG to predict ancestry.
The support vector machine was then used to assign 108,000 AoU
samplesto one of the five 1KG super populations. Abalanced training
cohortwasselected based onthese predicted ancestries, and principal
components were recalculated using this balanced training cohort. A
similarly balanced test cohort was selected based on ancestries esti-
mated from projection on the training set PCs. The resulting breakdown
ofthe cohorts by estimated ancestry is shownin Extended Data Table 3.

Both the training and testing cohorts include a number of indi-
viduals with highly admixed ancestry. Admixture was quantified using
the tool Admixture*® with five ancestral populations. The resulting
admixtures of each cohort are shown in Extended Data Fig. 2, and the
most common admixed ancestries in each cohort are summarized in
Extended Data Table 4.

Each cohort wasimputed using theimputation pipeline described
above, with1KG as the reference panel. By keeping the imputation pipe-
lineidentical to the pipeline used for the eMERGE dataset, and because
the AoU dataset uses the same GDA array as the eMERGE dataset, any
potential biases resulting from differing data production and process-
ing methods were removed. The training cohort was scored for each of
the ten conditions, and model parameters were fit by minimizing the
negative log likelihood as described. The test cohort was then used to
evaluate the generalizability of these model parameters.

Performance on test cohort. Extended Data Fig. 3illustrates the distri-
bution of calibrated z-scores in the test cohort using the parameters fit
inthe training cohort. As canbe seen, all ancestries show the intended
standard normal distribution of calibrated scores.

One of the mainimprovements of this method over previous meth-
ods is the inclusion of an ancestry-dependent variance in addition to
the ancestry-dependent mean. The importance of this is shown for
the hypercholesterolemia PRS in Extended Data Fig. 4. The variance
of this score differs significantly across ancestries, so that a method
that only fits the mean of the distribution as ancestry dependent can
resultinz-scoredistributions that have been attenuated towards zero
or expanded away from zero for some ancestries. By also treating vari-
anceasancestry dependent, thismethod resultsin z-score distributions
thatare more standardized across ancestries.

Inaddition toimproving calibration across ancestries, this method
can improve calibration within ancestries, particularly for highly
admixed individuals. An example of this canbe seen in Extended Data
Fig. 5. Because no ancestry group is homogenous, when individuals
are compared directly to other individuals in their assigned popula-
tion group, a dependence between admixture fraction and PRS can
result. This dependence is removed by the described PCA calibration
method, and the resulting calibrated PRSs are independent of admix-
ture fraction.

Reporting summary
Further information on the research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

Underlying data used to verify the performance of the PRS pipeline
are available in dbGaP https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs001584.v1.pl. De-identified datarelat-
ing totrial participants will be available through dbGaP (https://www.
ncbi.nlm.nih.gov/gap/) access and the AnVIL platform (https://anvil.
terra.bio/) as an interim analysis in 2024 and final dataset at the end
ofthe study, expected in 2026. Information (sites and weights) on the
implemented scores can be found at https://github.com/broadinsti-
tute/eMERGE-implemented-PRS-models-Lennon-et-aland alsoonthe
UCSCbrowser https://genome.ucsc.edu/s/Max/emerge. Additionally,
PGS Catalog IDs for most of the implemented scores are indicated in
Supplementary Table 3.

Code availability

Codesusedinthisworkto create and operate theimputationand PRS
pipelines are hosted at https://github.com/broadinstitute/palantir-
workflows/tree/main/ImputationPipeline. Code for the PRS ancestry
calibration can also be found in the AoU demonstration workspace
https://workbench.researchallofus.org/workspaces/aou-rw-bef5bf62/
demopolygenicriskscoregeneticancestrycalibration/data (open access
butresearcher registration required).
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Extended Data Fig.1| Case-control PRS histograms. Histograms of T2D PRS scores for case and control samples in the eMERGE I-1ll dataset.
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Extended Data Fig. 2 | Representation of the genetic ancestry admixture composition of both the Test and Training cohorts. The x-axis represents individuals

within the cohorts and the color-coding highlights the proportion of genetic admixture observed.
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Extended DataFig. 5| PRS z-score as a function of African Admixture of Africanancestry in the cohort. The ‘PCA Calibrated’ method is the method
Fraction, for individuals of African ancestry. In the ‘Bucketing’ method, a described above. Note the dependence on admixture fraction in the ‘Bucketing’
z-score s calculated by comparing to the mean and variance of all individuals method, which has been removed in the ‘PCA Calibrated’ method.
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Extended Data Table 1| Sensitivity and specificity of SNP and INDEL imputation from the Broad Imputation Pipeline (Broad)
and the Michigan Imputation Pipeline (Michigan) with the curated 1000Genomes reference panel when compared to
matched whole genome data for 42 AoU v1samples

SNP INDEL
Mean Sensitivity Mean Specificity Mean Sensitivity Mean Specificity
(95% Cl) (95% ClI) (95% CI) (95% Cl)
Genetic
Ancestry Group Broad Michigan Broad Michigan Broad Michigan Broad Michigan
NFE .
Finnish 98.4% 98.3% 99.8% 99.8% 96.5% 96.4% 99.0% 99.1%
(non (98.2-98.5) | (98.1-98.5) | (99.8-99.8) | (99.8-99.9) | (96.4 -96.7) | (96.2 -97.6) | (99.0-99.1) | (99.0 - 99.1)
European)
EAS_ 97.9% 97.7% 99.7% 99.7% 95.9% 95.6% 99.0% 99.0%
(East Asian) (97.1-98.7) | (96.9-98.5) | (99.7-99.7) | (99.7-99.8) | (95.3-96.6) | (94.9-96.4) | (98.9 -99.0) | (98.9 - 99.1)
SAS 97.9% 97.6% 99.7% 99.7% 95.9% 95.6% 99.0% 99.0%
(South Asian) (97.8-97.9) | (97.6-97.7) | (99.7-99.7) | (99.7-99.7) | (95.9-95.9) | (95.6-95.7) | (98.9 - 99.0) | (98.9 - 99.0)
A_FR 97.4% 96.9% 99.6% 99.5% 95.5% 94.9% 98.6% 98.6%
(African) (96.9-97.9) | (96.5-97.3) | (99.4-99.7) | (99.4-99.7) | (95.0-96.0) | (94.5-95.3) | (98.3-98.9) | (98.3-98.9)
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Extended Data Table 2 | Validation measures summary

PRS Accuracy: Pearson  PRS Pipeline Performance PRS Precision: PRS PRS Precision: PRS Limit of
Correlation between PRS concordance between blood . . i PRS pipeline Detection: Score
from array and WGS and saliva input types pipeing epoatabit, reproducibility site missingness
Asthma 99.3% 100% 100% 0.0020 0.69%
Atrial Fibrillation 98.6% 100% 100% 0.0010 1.20%
Breast Cancer 93.0% 100% 100% 0.0040 0.32%
Chronic Kidney Disease 98.3% 100% 100% 0.0001 0.69%
Coronary Heart Disease 98.2% 100% 100% 0.0010 0.46%
Hypercholesterolemia 95.9% 100% 100% 0.0050 1.20%
Obesity/BMI 99.5% 100% 100% 0.0020 0.70%
Prostate Cancer 96.4% 100% 100% 0.0006 2.97%
Type 1 Diabetes 99.5% 100% 100% 0.0001 2.97%
Type 2 Diabetes 98.8% 100% 100% 0.0010 0.70%

PRS pipeline accuracy is assessed as the Pearson correlation between scores derived from PCR-free WGS and those derived from imputed genotyping data (GDA) in 70 specimens. Pearson
correlation shown is the mean correlation across all ancestry groups tested.PRS pipeline performance as a function of sample input was assessed by comparing the scores from 20 matched
blood and saliva pairs. PRS pipeline precision (repeatability) is the measure of concordance in PRS scores calculated from 70 specimens, run through the pipeline 10 times over the course

of two weeks. PRS pipeline precision (reproducibility) is assessed using three samples, each run 6 times end-to-end and then compared in a pairwise manner and represented as the z-score
standard deviation is used as a measure of variability. PRS Limit of Detection: score site missingness is the percentage of the original score sites that are missing from the final imputed dataset.
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Extended Data Table 3 | The numbers of participant data files in the training and test cohorts created within the All of Us

dataset for the purposes of generating the ancestry calibration model parameters

Training Cohort Test Cohort
AMR 1817 1500
AFR 1664 1500
EAS 1137 1436
EUR 1823 1500
SAS 444 654
TOTAL 6885 6590
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Extended Data Table 4 | Admixed ancestries are defined as ancestries for which an individual’s admixture fraction is greater
than 20%. For example, an individual who is indicated by admixture to be 45% AFR, 37% EUR, 12% AMR, 5% EAS, 1% SAS

would be included in the AFR-EUR row of this table

Admixed Ancestry Training Cohort Test Cohort
AFR-EUR 590 556
AMR-EUR 1238 883
EAS-EUR 236 102
EUR-SAS 191 229
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|Z’ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

IZ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X] A description of all covariates tested
|Z| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|Z| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

IZ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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E] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

E] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|Z’ Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection  Data collection for participants (age, sex-at-birth, ancestry) was collected in a Redcap software (v14.0.1) hosted by Vanderbilt

University. Data analysis Imputation and PRS pipeline code is made available in github and a link has been added to the online methods

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviBGRANWe strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Underlying data used to validate performance of PRS pipeline are available in dbGAP https://emerge-network.org/dbgap/

De-identified data relating to trial participants will be available through dbGaP (https://Www.ncbi.nlm.nih.gov/gap/) acCess and the AnVIL platform
(https://anvil.terra.bio/) as an interim analysis in2@4 and final dataset at the end of the study, expected in2@6.

Information (sites and Weights) on the implemented sCores can be found at
https://github.com/broadinstitute/eMERGE-implemented-PRS-models-Lennon-et-al and also on the UCSC browser https://genome.ucsc.edu/s/Max/
emerge

Additionally, PGS Catalog IDs for most of the implemented scores are indicated in Supplementary Table 3.
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Reporting on sex and gender Sex-at-birth information is captured at enrollment and used in the triaging of certain PRS results (e.g. Breast Cancer PRS is
only calculated for participants declaring sex-at-birth of female; Prostate Cancer PRS is only calculated for participants
declaring sex-at-birth of male).

Population characteristics Age is a relevant covariate as described in the manuscript as some scores are returned only for adult participants, some for
pediatric only, and some for both. Sex-at-birth is also a relevant covariate as described above. Self-reported ancestry is also
captured at enrollment but is not used in the PRS calculation, rather computed genetic ancestry is used.

Recruitment The eMERGE network aims to increase applicability of genomic risk prediction across populations by validating PRS in
multiple ancestral groups and enrolling a prospective cohort that includes individuals who are currently underrepresented in
clinical-genomic research. Six sites are committed to recruiting an “enhanced diversity cohort” with a target of 75% of
individuals belonging to a racial or ethnic minority or medically underserved population, whereas the remainder of clinical
sites will target 35%. Enrollment is not targeted to individuals with specific conditions, although individuals with prevalent
conditions can be included. The network focuses on 3 major aims: (1) recruit 25,000 individuals (ages 3-75 years) from
general health care system populations, (2) generate cross-ancestry and ancestry-adjusted PRS as the basis for reports to
return risk alongside family health history, clinical, and monogenic risk, and (3) measure individual outcomes and provider
behaviors and comprehension in response to receiving this information.

Ethics oversight The Vanderbilt University Medical Center CC is the institutional review board of record (#211043) for the network’s single
institutional review board, approved in July 2021.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size The expected numbers of participants that would meet study thresholds for “high risk GIRA” were calculated based on the genetic
datasets used to develop and test the PRS, as described in the manuscript.

Data exclusions  No data were excluded
Replication Within the validation phase the imputation and PRS pipelines were successfully assessed for repeatability and reproducibility as described

in the Methods.

Randomization  The first 2,500 subjects analyzed represent each of the first 2,500 individuals recruited into this study. The order of subject analysis was random

Blinding The analysts were blinded to actual diagnoses at time of PRS calculation.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[] Antibodies XI[] chip-seq

[[] Eukaryotic cell lines
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|:| Animals and other organisms
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Eukaryotic cell lines

X[[] Flow cytometry

XI[[] MRi-based neuroimaging
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