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Alphabetic List with Links to Specific Report Information

Report Title
Year of Report

Release and Link to
Information

Anxiety 2022

Asthma 2022

Atrial Fibrillation 2020

Attention Deficit Hyperactivity Disorder (ADHD) 2023

Basal and Squamous Cell Carcinoma 2022

Cat Allergy 2021

Coronary Artery Disease 2020

Diverticulitis 2022

Dog Allergy 2021

Eczema (Atopic Dermatitis) 2021

Fibromyalgia 2022

Gallstones 2021

Gestational Diabetes 2021

Glaucoma 2022

Gout 2020

Hashimoto’s Disease 2022

HDL Cholesterol 2021

High Blood Pressure 2020

Insomnia 2023

Irritable Bowel Syndrome 2022

Kidney Stones 2021

LDL Cholesterol 2020

Lupus 2023

Melanoma 2022

Migraine 2020

Nearsightedness 2021
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Nonalcoholic Fatty Liver Disease 2020

Obstructive Sleep Apnea 2020

Panic Attacks 2023

Polycystic Ovary Syndrome 2021

Preeclampsia 2023

Psoriasis 2022

Restless Legs Syndrome 2020

Rosacea 2022

Seasonal Allergies 2022

Severe Acne 2021

Triglycerides 2021

Uterine Fibroids 2020

Introduction

Polygenic scores (PGS) estimate the heritable portion of risk for many common chronic

diseases and other traits. Genome-wide association studies (GWAS) frequently identify multiple

genetic variants with small to moderate individual impact on risk for a condition. To quantify the

cumulative impact of these variants on risk, machine learning methods are used to construct

statistical models that generate polygenic scores. Recently, advances in modeling methodology

have enabled massive increases in the number of genetic variants that can be included in

polygenic models, leading to corresponding increases in the proportion of trait variance that

these models explain (So & Sham, 2017; Yang et al., 2010). As a result, PGS are now being used

to estimate heritable risk for a wide range of conditions and research is ongoing to evaluate

their potential utility as part of clinical decision making (Khera et al., 2018).

The key factor that limits researchers' ability to create large polygenic models is the size

of the training cohort. Very large sample sizes are necessary both to identify genetic variants

associated with a disease and to estimate their joint contribution to risk (Dudbridge, 2013).

Additionally, obtaining samples from diverse populations is necessary to create models that are

calibrated to these populations, whether by assessing how well a model developed using data

from a particular ancestry group (usually European) generalizes to other (usually non-European)

groups, or by developing models using data from various populations themselves (Duncan et al.,
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2019). With over thirteen million kits sold and approximately 80% of customers — including

customers of many different ancestries — consenting to participate in research, 23andMe has a

unique ability to develop large PGS that predict a wide range of health conditions and traits and

to optimize and asses PGS performance across people with diverse ancestral backgrounds. .

Analyses of the company's genetic and self-reported health data show that we can replicate

GWAS on clinically collected health information (Tung et al., 2011). Over the last several years,

23andMe has used PGS as the basis of dozens of customer reports on topics ranging from the

ability to match a musical pitch to the likelihood of developing type 2 diabetes (Furlotte et al.,

2015; Multhaup et al., 2019).

Here we detail the modeling methodologies and evaluation procedures used to create

the PGS behind 23andMe Health Predisposition and Wellness reports on common health

conditions (Figure 1). As an example, we detail how this methodology was used to create and

evaluate the PGS used in 23andMe's LDL Cholesterol report. The Appendices to this White Paper

further summarize the performance and characteristics of each PGS used in recently released

reports. We intend for this White Paper and the Appendices to be living documents that will be

updated as methodologies change and new PGS-based genetic reports are released. A change

log is provided at the bottom of this document to describe significant updates.

Methods

Phenotype validation

Previous analyses of 23andMe survey data have demonstrated the capacity of the

research platform to replicate published results (Tung et al., 2011). Nevertheless, as all

phenotypes are derived from self-reported survey data, we assess each phenotype used to

create a PGS to determine whether it adequately captures the intended concept. First, we

compare the prevalence of the phenotype across the dimensions of age, sex, and ancestry to

prevalence values reported in published literature. While overall prevalence values may differ due

to differences between the composition of 23andMe research participants and other large

cohorts, demographic trends should be broadly consistent. In other words, a phenotype that is

more prevalent among men than women or more common in older than younger individuals

should show these trends in both the 23andMe research participant population and in other

cohorts.
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Figure 1: Outline of 23andMe's PGS creation procedure from self-report of survey data to

generation of the polygenic model powering a health report.

Next, if there are well-established correlates or predictors of the phenotype and survey

questions about these correlates are available in the 23andMe database, we attempt to replicate

these associations using generalized linear models as an additional check of construct validity.

For example, because body mass index (BMI), high LDL cholesterol, and type II diabetes are

known risk factors for coronary artery disease (CAD; Arnett et al., 2019), we would expect

associations between these characteristics at baseline and self-reported incident CAD to be

comparable in direction and magnitude to clinically ascertained samples.

Lastly, we may assess whether the summary statistics from our GWAS replicate published

GWAS results on the same or similar phenotype, if available. The primary metric for this

comparison is the correlation between the effect sizes of independent genome-wide significant

SNPs present in both summary statistic sets. If the 23andMe survey data is a good

representation of the intended phenotype, we expect our GWAS of survey-based self-reported
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phenotypes to substantially replicate published GWAS results for phenotypes obtained through

clinical ascertainment or other methods. GWAS comparisons (if available) are provided for each

phenotype in the Appendices to this White Paper.

Genotyping

Genetic variants are assayed using Illumina BeadChip arrays as previously described in

23andMe White Paper 23-19 (Multhaup et al., 2019). In summary, DNA is extracted from saliva

samples, and ​genotypes are determined by the National Genetics Institute (NGI), a subsidiary of

the Laboratory Corporation of America and a Clinical Laboratory Improvement Amendments

(CLIA)-certified clinical laboratory. To date, most samples were run on one of three Illumina

BeadChip platforms: Illumina HumanHap550+ BeadChip platform augmented with a custom set

of ∼25,000 variants (V3); the Illumina HumanOmniExpress+ BeadChip with a baseline set of

730,000 variants and a custom set of ∼30,000 variants (V4); and the Illumina Infinium Global

Screening Array (GSA), consisting of 640,000 common variants supplemented with ~50,000

variants of custom content (V5). Samples with a call rate of less than 98.5% are discarded.

Dataset creation

Research participants included in datasets used for PGS creation are all 23andMe

customers who have consented to participate in research and have answered survey questions

required to define the phenotypes of interest. Both males and females and participants ages 20

to 80 are included unless otherwise specified in the Appendices. For any groups of related

participants with identity-by-descent of more than 700 centimorgans, individuals are removed

from the dataset until only one is left, preferentially retaining the less common phenotype class.

Research participants are grouped as per Campbell et al. (2015) into Sub-Saharan

African/African American, East/Southeast Asian, European, Hispanic/Latino, South Asian, and

Northern African/Western Asian datasets. Any additional inclusion or exclusion criteria for each

phenotype are described in their corresponding summaries in the Appendices. For each

phenotype, training, validation, and testing cohorts are defined in groups with sufficient data.

Details of how data representing different populations are split for each phenotype are found in

the Appendices. Whereas the GWAS dataset includes individuals genotyped on multiple

genotyping platforms, the training, validation, and testing datasets are restricted to individuals

genotyped on the V5 array as these model results are delivered only to customers genotyped on

this array.
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Genome-wide association study (GWAS)

GWAS are performed as described previously (Tian et al., 2017), except that they are

restricted to the union of variants genotyped on the V3, V4, and/or V5 arrays. Participants

included in the GWAS may be in the model training set depending on their genotyping array

version, but are not included in the validation or testing sets.

Variant and model selection

After running GWAS, variants are filtered to exclude those that do not pass GWAS quality

control metrics: parent-offspring transmission, Hardy-Weinberg p < 1e-20, large sex effects,

multiple reference sequence matches, significant genotyping date associations, genotype rate ≤

0.95, imputed estimated R-squared ≤ 0.8, minor allele frequency ≤ 0.01, minor allele

frequencies below 0.5% across several ethnicities, and other internal variant data quality filters.

To select variant sets, we perform pruning and thresholding with combinations of

selection hyperparameters. For example: distance (kb) = [10, 100, 200, 1000, 2000], and GWAS

p-value = [1e-2,1e-4, 1e-6,1e-8]. Variant sets up to a pre-specified maximum size are kept for

hyperparameter evaluation. Variant selection hyperparameter evaluation is performed by fitting a

model with each variant set in the training cohort and evaluating in the validation cohort. As

described above, the validation cohort is distinct from the training and testing cohorts and no

sample sets contain close relatives within or between sets.

Models typically include the first ten genomic principal components, age, and genetically

determined sex (unless the phenotype is single sex only). The variant data are V5 platform

genotype calls, and missing values are filled in with population mean dosages. The variant set

with the highest area under the receiver operator curve (AUCROC) in the validation sets for a

specific cohort is designated as the optimal feature set. Final fit statistics are obtained using the

test set, which was held out of all upstream analyses. Variations in this approach are described

in the phenotype-specific Appendices.

Model features

Features used in the model training typically include genomic principal components

(PCs), demographic factors like age, sex, higher-order terms of age, interactions terms between

demographic factors, and dosages for the variants. Variants on the X chromosome for males are

modeled as a dominance effect (encoded 0 or 2). The purpose of including genomic PCs in the
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regression is to account for any residual population substructure. While these genomic PCs and

other non-genetic factors are used to create the PGS and related risk estimates, weights for

features other than genetic variants are set to zero when computing the PGS so that the

customer-facing qualitative results are based on only genetic variation identified in the GWAS.

Absolute risk estimates associated with a PGS (the quantitative results) take into account

self-reported birth sex and genetic ancestry as described previously (Campbell et al., 2015).

Model training

PGS are built using regression methods based on generalized linear models (GLM).

Individual-level data, rather than GWAS summary statistics, are used to train these PGS.

Features including genomic PCs, dosages for each variant, and demographic factors are treated

as independent variables. For binary phenotypes, we use multivariate logistic regression under a

general linear model framework. For quantitative phenotypes, we use linear regression. After a

model is specified, weights for each feature are calculated through regression. We use

Scikit-learn’s LogisticRegression gradient descent algorithms (Pedregosa et al., 2011) to

determine optimal parameter weights, typically with the liblinear solver and L2 regularization.

Methods for non-European ancestries

One of the biggest challenges for PGS today is transferability between ancestries (Martin

et al., 2017). Individuals of European descent make up the overwhelming majority of genetics

research participants even though they represent a minority of global genetic diversity (Popejoy

& Fullerton, 2016). As a result, PGS trained with data from individuals of European descent

typically perform worse among individuals of other ancestries.

We leverage our large research participant population with non-European ancestry to

address this challenge using four possible approaches for each ancestry-phenotype pair, as

sample sizes permit. Overall, no single method always works for every phenotype-ancestry

combination. The specific method used for each ancestry group is considered a hyperparameter

and optimized on a case-by-case basis as described in the Appendices for each phenotype.

Note that all validation and testing are done in ancestry-specific datasets to avoid

overestimation of performance metrics.

First, for phenotypes and ancestries with relatively large sample sizes, separate GWAS

are run for each group, and ancestry-specific PGS are created from these ancestry-specific

GWAS. However, for many phenotypes we do not have enough survey responses to run
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sufficiently powered GWAS independently for all ancestry groups. Our second approach is to

leverage information from the European GWAS to boost power for the non-European GWAS. To

accomplish this, we perform a meta-analysis (Munafò & Flint, 2004) that combines information

for each SNP across ancestries, and generate PGS leveraging training sets comprised of

multiple ancestry groups (while controlling for population structure using genomic principal

components). This method often yields effect size estimates that are more predictive for the

specified non-European cohort. If this method does not improve performance for a given

non-European ancestry group, the third approach we attempt is to run a GWAS and train a PGS

using European-ancestry data, with model hyperparameters optimized based on performance in

a validation dataset consisting of data from the non-European ancestry group. Finally, if none of

these three methods is able to improve performance over simply applying the European-trained

PGS to the non-European ancestry group, the European-trained PGS is used to deliver results to

non-European customers.

Platt scaling

After model training, the PGS may be overfit to their training datasets. This can lead to

miscalibration when applied to other datasets (especially those from individuals of

non-European descent). To recalibrate the PGS model, the cumulative effect size of the PGS is

re-estimated using a procedure known as Platt scaling, as described previously (Multhaup et al.,

2019). Briefly, PGS values are calculated for each participant in all datasets. These original

values are then standardized to fit the normal distribution. Then, separately in each test set, a

secondary generalized linear model is fit to re-predict the outcome variable using the normalized

PGS as a single predictor. These linear models are then used to adjust PGS scores for each

individual. As these linear models are trained separately in each dataset, the coefficient of the

PGS and the intercept in these models are specific to that dataset, accomplishing recalibration.

The testing datasets are usually ancestry-specific or ancestry- and sex-specific.

Assessing model performance

Final performance statistics for European-trained models are determined in the

European test set, which is not included in the GWAS, hyperparameter tuning, or any model

fitting. Similarly, statistics for non-European groups are determined in test sets that were not

included in any previous stage of analysis.
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Ancestry-specific model performance is evaluated using the following metrics (and

corresponding plots): 1) area under the receiver operator curve (AUROC), 2) risk stratification,

estimated as odds ratios and relative risks for those in the upper segments of the distribution

compared to those in the middle of the distribution (40th to 60th percentiles), 3) an estimation

of AUROC within each decade of age — to assess age-related biases in model performance —

and 4) calibration plots between PGS quantiles after Platt scaling and phenotype prevalences in

each ancestry group.

PGS result categorization

For simplicity and clarity, we separate results from the PGS into three categories. The

first represents individuals at increased likelihood of developing the condition and the second

represents typical — i.e., not increased — likelihood of developing the condition. This is

accomplished by determining a threshold (a specific level of risk defined by an odds ratio or

relative risk) and then calculating the specific PGS value that corresponds to that threshold such

that everyone with a higher PGS has at least that level of risk. A detailed explanation of this

binarization into increased and typical likelihood is provided in 23andMe White Paper 23-19

(Multhaup et al., 2019). The third category represents individuals who have a very low likelihood

of developing the condition, as defined by having an estimated likelihood of developing the

condition (as defined in the next section) of less than 1 out of 1,000 . This category is intended

to avoid giving overly precise results to customers, as the PGS and report do not factor in all

genetic and lifestyle factors, and to help customers more easily interpret their overall level of

absolute risk for developing the condition.

Estimated likelihoods

For each customer, the report result is presented as the likelihood of developing a

condition by some target age (e.g., their 70's). This estimated likelihood is derived by multiplying

an estimated genetic relative risk by an age- (and potentially sex- and ancestry-) specific

baseline condition prevalence at the target age. Baseline prevalence values are derived from

either external datasets, if available, or the 23andMe database. If there is not a clear match

between a population in an externally derived baseline and a 23andMe ancestry group, the

European baseline is provided instead because it is the largest available sample. The specific

datasets used to calculate baseline prevalences for each phenotype are described in the

Appendices.
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The method for deriving estimated relative risks associated with a genetic result is as

follows. First, PGS are standardized within each ancestry-specific test set, and PGS distributions

are segmented into bins corresponding to percentiles. We use 92 bins, with the lowest and

highest 5% of customers placed into single bins, and 90 intermediate bins each capturing 1% of

the PGS distribution between these extremes. We chose to use larger bins at the extremes to

avoid over- or under-estimating probabilities at the extreme tails of the PGS distribution. We bin

participants rather than provide unique estimates for each individual because, in most cases, the

customer-facing result is rounded to a whole percent. Customer-facing results are given to one

decimal place only in the case of especially low estimates, for which this level of precision is

necessary for customers to distinguish their unique likelihood estimates from what is considered

typical (defined as the range between the minimum likelihood and the threshold between typical

and increased likelihoods for the customer’s specific genetic ancestry and birth sex).

Next, we calculate model-estimated prevalences for each genetic result bin at the target

age of the report result. This is accomplished by re-estimating the prevalences for the test sets

with the age parameter set as the target age (along with age-related covariates like any

age-by-sex interaction terms) for the whole test set. In this way, we leverage the full (genetics +

demographics) model to estimate prevalences for each ancestry group at the target age for both

sexes. We generate these model-estimated prevalences because the sample size of every

ancestry-specific test set is usually not sufficient to calculate reliable observed prevalences

stratified by sex, age, and PGS percentile.

These estimated phenotype prevalences at the target age are Platt scaled to adjust for

any miscalibration within each ancestry group. The parameters used for Platt scaling are based

on the distribution of estimated probabilities given participants’ actual ages (i.e., Platt scaling

parameters are not re-estimated when age is fixed for the whole sample).

These scaled estimated phenotype prevalences are transformed into relative risks with

reference to the median of each ancestry group’s PGS distribution. In other words, the estimated

prevalence for a particular genetic score percentile at the target age for a given sex is divided by

the estimated prevalence at the median PGS for that group. The resulting values represent

estimated relative risks based on the full model (including both genetic and demographic

features) across the dimensions of genetic risk and demographics. We then multiply these

relative risks by the baseline prevalence values to yield target age-linked estimated likelihoods.

These estimates should be interpreted in light of several limitations to this approach.

First, for conditions linked to higher rates of mortality, baseline prevalence estimates at
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advanced ages gathered from cross-sectional data sources likely undercount the true cumulative

incidence of a condition. As such, these estimates represent the likelihood of having the

condition assuming survival to a particular age. While other modeling strategies, like competing

risks models (Gail et al., 1989), could be used to account for loss in participation due to mortality

or other causes, they require detailed incidence data that are often unavailable. Furthermore,

likelihood estimates as computed here only take into account risk stratification due to common

variants. There are often rare variants that could be used to estimate a more comprehensive

total lifetime risk. Additionally, many non-genetic factors, often including lifestyle, contribute to

total risk for many conditions.

Quality control measures

Given that these polygenic models encompass thousands of variants, it is possible that

an individual may not have genotype calls for a subset of markers included in a particular model.

For those missing genotype calls, we impute to the population mean dosage to calculate an

individual’s score. Consequently, these missing values can introduce uncertainty as to whether or

not a customer’s score is above or below the binary qualitative result threshold.

In order to estimate this uncertainty, we use a metric similar to a Z score that includes

information about a variant’s effect size (𝛽), its effect allele frequency (p), and an individual’s

distance from the binary result threshold. For each missing genotype call i across n missing

calls, we use the below equation to determine the ratio between the distance of an individual’s

score from the threshold and the uncertainty in the score due to missing values.

As this metric approaches zero, the probability that a customer’s score could be on the

other side of the threshold increases to a maximum of 50%. If an individual’s score has greater

than a 1% chance of being on the other side of the binary threshold due to the specific

missingness patterns in their data, the customer is alerted to the possibility that their qualitative

result could differ if they were genotyped again and these missing values were called.
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Irrespective of this metric, no result is provided to customers missing genotype calls at more

than 10% of the markers in a particular model.

Validation in external datasets

In order to assess the generalizability of these models, we have assessed the

performance of select PGS models in external datasets. Specifically, we are looking to

understand how well these models can both stratify risk and provide accurate risk assessment

outside of 23andMe research cohorts. To do this we conducted analyses on both White and

Black cohorts from the Atherosclerosis Risk in Communities (ARIC) study (dbGaP accession

phs000280.v7.p1). Both phenotype data (dbGaP accession pht000114.v3.p1) and genetic data

(dbGaP accession phg000248.v1) for this analysis was from the ARIC Gene Environment

Association Studies (dbGaP accession phs000090.v7.p1). Started in 1987, ARIC is a longitudinal

study of nearly 16,000 participants that collected phenotype data on cardiometabolic conditions

as well as genotype data on its participants. Within these cohorts we calculated PGS from our

models, harmonized phenotypes to closely match those that were used to train our PGS models,

and tested the performance of our PGS models on predicting these phenotypes. Our general

methodology is described below, and the specific descriptions, data, and results for each

phenotype are located in the White Paper appendices for each specific phenotype. Currently,

phenotypes that have been externally validated are as follows: coronary artery disease, high

blood pressure, LDL cholesterol, HDL cholesterol.

Phenotype Selection

The phenotypes available in the ARIC dataset are not precisely the same as those

collected by 23andMe. We attempted to match phenotypes as closely as possible to those our

PGS models were trained to assess. Cases and controls were defined using self-reported, clinical

examination and biomarker data when available.

PGS Calculation

PGSs were calculated as weighted summations of ARIC SNP dosages with 23andMe PGS

weights, using the overlapping SNPs between the PGSs and ARIC’s 1000G imputation panel.

The alignment of SNPs between the PGSs and the ARIC data was performed based on

chromosome number and position, using the Genome Reference Consortium human genome
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build 37 (GRCh37) as the reference genome, allowing for the accurate identification and

matching of SNPs between the two datasets. To ensure consistency in the interpretation of the

23andMe PGs across the two datasets, we reversed the direction of the beta estimate of any

SNPs that had a different coding allele in the ARIC study versus the 23andMe PGS.

PGS Performance Validation

For each PGS we assessed model performance in the ARIC cohorts using AUROC, odds

ratios, and calibration plots showing actual prevalence versus predicted prevalence for each

ventile of PGS score. For the calibration plots, we set the baseline log-odds intercept based on

the measured prevalence of the condition in the cohort, and then scaled z-scores from the ARIC

cohorts using the PGS model platt coefficient.

Case study: High LDL Cholesterol

Here we demonstrate the above methods applied to a model predicting the genetic risk

of ever having high LDL cholesterol (LDL-C) levels. This section is intended to walk the reader

through the generation of the consumer-facing results for this model. Details of the remaining

PGS-based health reports are described in the separate Appendices to this White Paper.

Dataset

Individuals eligible for the development of the LDL cholesterol model were 23andMe

customers who provided informed consent and answered survey questions pertaining to LDL-C

and a history of cholesterol-lowering medication (Table 1).

High LDL cholesterol phenotype definition

The phenotype used to develop polygenic models represented self-report of ever having

had high LDL-C or ever having been prescribed medication to lower cholesterol, an indication

that a physician likely determined that the respondent had high LDL-C. This phenotype

combined responses from three questions pertaining to the most recent LDL-C, highest ever

LDL-C, and medication history. Prevalence increased with advancing age (Figure 2). Additional

detail about survey questions is provided in the 2020 Appendix to this White Paper.
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Comparison to previously published GWAS

The largest external GWAS to date on measured LDL-C levels (as published by the Global

Lipid Genetics Consortium, GLGC) yielded many genome-wide significant loci (Willer et al.,

2013). In order to validate the results of the 23andMe GWAS, we compared the summary

statistics of these two GWAS. A Manhattan plot below (Figure 3) shows an overlay of the p-values

obtained by the two GWAS, rescaled to have similar peak heights. This plot demonstrates the

substantial overlap between the two GWAS, confirming that the self-reported phenotype used in

the 23andMe data, while not as granular as quantitative laboratory measures of lipid levels, does

indeed capture genetic signals highly similar to those captured by GWAS of LDL-C levels

measured from blood. Among the 471 genome-wide significant hits in the GLGC data (obtained

after pruning and clumping the summary statistics), 407 (86.4%) were also genome-wide

significant in the 23andMe GWAS.

Table 1: High LDL-C participant cohort descriptives

Platform Ancestry Group Sample Use N
Age mean

(SD)
Sex

(% female)
High LDL-C

Prevalence (%)

V1 to V5 European GWAS 617,165 56.2 (13.8) 54.60% 41.99%

V5

European

Training the
European
Model

511,469 55.0 (13.9) 55.50% 40.60%

Testing 56,749 55.1 (14.0) 55.24% 40.94%

Sub-Saharan
African/African
American

Testing 18,710 50.1 (13.5) 59.02% 40.94%

East/Southeast
Asian

Testing 18,357 44.7 (14.2) 57.51% 27.07%

Hispanic/Latino Testing 72,806 47.8 (14.0) 56.46% 33.86%

South Asian Testing 6,128 44.3 (13.0) 37.73% 34.48%

Northern African/
Western Asian

Testing 5,267 49.4 (14.7) 40.38% 38.47%
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Figure 2: High LDL-C phenotype distribution in the European ancestry training set

Figure 3: Manhattan plot of 23andMe and Willer et al., (2013) GWAS summary statistics for

LDL-C. The p-values for each variant shared between the 23andMe (blue) and Global Lipids

Genetics Consortium (GLGC; red) genome-wide association studies (GWASs) are depicted.

Chromosomal location is represented on the horizontal axis, and the negative log of the p-value

is represented on the vertical axis (scaled separately for each analysis).
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Figure 4: Scatter plot showing the estimated effect sizes for 23andMe (change in log-odds per

unit predictor change) and Global Lipids Genetics Consortium (GLGC; linear betas; Willer et al.,

2013) genome-wide significant hits shared between the two GWAS for LDL cholesterol.

Next, as an additional validation of the 23andMe GWAS, the effect sizes of all

independent genome-wide significant loci found in both sets of summary statistics were

compared. These effect sizes should be similar in scale and with the same positive or negative

valence. We determined the correlation between these two sets of effect sizes after reformatting

the data to align all strand and reference alleles and selecting independent variants using

clumping and pruning procedures in PLINK (Chang et al., 2015; Purcell et al., 2007; parameters

p-value = 5e-8, r2 = 0.5, distance = 250kb). As shown in Figure 4, all but two genome-wide

significant loci showed the same positive or negative valence in the GWAS, and the effect sizes

were strongly correlated. The replication of the majority of previously identified loci in addition

to the correlated effect sizes demonstrates that the 23andMe GWAS based on self-reported data

adequately captured the results of the external GLGC GWAS, which was based on clinically

ascertained laboratory values.

Model performance
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Demographic covariates included in polygenic modeling for LDL-C were age, sex, age2, as

well as sex-by-age and sex-by-age2 interaction terms. Model training and hyperparameter tuning

was performed in samples of European descent, as described in Methods. The final selected

model contained 2,950 genetic variants.

Performance and calibration statistics were assessed as described (see Methods). As

expected, the PGS performed best in individuals of European ancestry, followed by individuals of

Hispanic/Latino, South Asian, and Northern African/Western Asian ancestry, and finally in

Sub-Saharan African/African American and East/Southeast Asian ancestries (Table 2, Figures

5-7). In all these populations, however, the odds ratio for high LDL-C for individuals in the top

5% of the (genetics-only) PGS versus individuals with average PGS was close to or higher than

two, indicating that the PGS was able to stratify a substantial amount of risk for those at the right

tail of the distribution. Additionally, Platt-scaled calibration plots illustrate a high correlation of

predicted versus real prevalences in all ancestries (Figure 8).

Qualitative result thresholding

We used standardized (within each population) polygenic scores to determine the

population-specific threshold corresponding to an odds ratio of 1.5 relative to the 40th to 60th

percentile of each population’s distribution. Table 3 shows the proportion of customers above

this threshold, who would thus receive the “increased likelihood” result. Likelihood ratios

associated with the “increased likelihood” result are also provided in Table 3.

Table 2: High LDL-C PGS performance characteristics

Ancestry Group
(test sets)

Full Model
AUROC

Genetics Only
AUROC

Odds Ratio
top 5% versus

average (95%CIs)

Odds Ratio
top 5% versus
bottom 5%
(95%CIs)

European 0.7770 0.6456
2.81

(2.58 to 3.07)
10.24

(9.02 to 11.63)

Sub-Saharan
African/African
American

0.7312 0.5985
1.91

(1.67 to 2.23)
4.10

(3.34 to 5.05)

East/Southeast Asian 0.7635 0.5888
1.91

(1.64 to 2.22)
4.30

(3.43 to 5.39)

Hispanic/Latino 0.7561 0.6179
2.31

(2.15 to 2.49)
5.87

(5.27 to 6.55)
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South Asian 0.7828 0.6222
2.69

(2.08 to 3.47)
7.75

(5.29 to 11.37)

Northern
African/Western Asian

0.7776 0.6188
2.81

(2.13 to 3.72)
7.49

(5.04 to 11.14)

Table 3: High LDL-C qualitative result characteristics

Ancestry Group
(test sets)

Odds Ratio for
Result Threshold

Percent Above
Threshold

Likelihood Ratio of
"Increased" Result (95% CIs)

European 1.5 22.79% 1.97 (1.91 to 2.03)

Sub-Saharan
African/African American

1.5 12.32% 1.69 (1.56 to 1.82)

East/Southeast Asian 1.5 10.37% 1.63 (1.50 to 1.78)

Hispanic/Latino 1.5 17.19% 1.80 (1.74 to 1.86)

South Asian 1.5 18.29% 1.82 (1.64 to 2.02)

Northern African/Western
Asian

1.5 17.47% 1.85 (1.64 to 2.08)

Baseline prevalences used for likelihood estimate

Ancestry- and sex-specific baseline prevalences of ever having had high LDL cholesterol

were derived from the 2017 data release of the Behavioral Risk Factor Surveillance System

(BRFSS; Centers for Disease Control and Prevention [CDC], 2017). The specific calculated

variable (coded _RFCHOL1) represents the concept: adults who have had their cholesterol

checked and have been told by a doctor, nurse, or other health professional that it was high. The

ancestry variable used (coded _RACE) included the categories White non-Hispanic, Black

non-Hispanic, Asian non-Hispanic, and Hispanic. Analysis was restricted only to those between

the ages of 70 and 79, to capture this decade of age (coded _AGEG5YR). The baselines used for

each sex and ancestry combination and how they map to each 23andMe ancestry group are

shown in Table 4.
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Table 4: High LDL-C baseline prevalences in BRFSS data between ages 70 to 79

Group
Matched 23andMe
Population(s)

Sex N Prevalence 95% CI

White
Non-Hispanic

European, Northern
African/Western Asian,

Other

Male 23,256 55.02% 54.38% to 55.66%

Female 33,369 54.22% 53.69% to 54.76%

Black
Non-Hispanic

Sub-Saharan
African/African
American

Male 1,335 52.58% 49.91% to 55.26%

Female 2,795 53.42% 51.57% to 55.27%

Asian
Non-Hispanic

East/Southeast Asian,
South Asian

Male 327 46.18% 40.77% to 51.58%

Female 386 51.30% 46.31% to 56.28%

Hispanic Hispanic/Latino
Male 951 46.58% 43.41% to 49.75%

Female 1,619 51.95% 49.51% to 54.38%

Figure 5: High LDL-C AUROC across ancestry-specific test sets
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Figure 6: High LDL-C AUROC within each decade of age across ancestry-specific test sets

Figure 7: High LDL-C case/control standardized PGS distributions across ancestry-specific test

sets
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Figure 8: High LDL-C Platt-scaled calibration plots across ancestry-specific test sets

External Validation

We conducted an external analysis on our LDL PGS model in the Atherosclerosis Risk in

Communities (ARIC) study cohort. To determine LDL status, we combined coded phenotypes

ldlsiu02, cholmdcode01, and cholmdcode02. These phenotypes report measured LDL levels,

whether the participant is taking medications to treat high cholesterol, and whether the

participant is taking secondary medications that might affect cholesterol levels. Any participant

who reported taking cholesterol lowering medication or had LDL > 160mg/dL was considered a

case. All other participants were considered controls. Any participant taking secondary

medication that might affect cholesterol levels was removed from the analysis.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/variable.cgi?study_id=phs000090.v7.p1&phv=22853
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/variable.cgi?study_id=phs000090.v7.p1&phv=22846
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/variable.cgi?study_id=phs000090.v7.p1&phv=22847
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Table 5: ARIC cohort statistics for High LDL Cholesterol

Cohort N
Mean max age

(SD)
Sex (% female)

High LDL
Prevalence (%)

ARIC White 2,779 53.8 (5.6) 51.85% 25.51%

ARIC Black 713 52.9 (5.7) 56.52% 25.67%

Table 6: High LDL Cholesterol PGS performance in 23andMe and ARIC cohorts: PGS stratifies
risk similarly in 23andMe and external cohorts.

Cohort
Genetics Only AUC

(95%CIs)
Odds Ratio top 20%

versus average (95%CIs)

Odds Ratio
top 20% versus
bottom 20%
(95%CIs)

23andMe
European

ancestry test set

0.6456
(0.6409 to 0.6503)

2.06 (1.96 to 2.18) 4.62 (4.37 to 4.90)

ARIC White
Cohort

0.6716
(0.6475 to 0.6957)

2.02 (1.57 to 2.60) 5.49 (4.03 to 7.47)

23andMe African
American

ancestry test set

0.5985
(0.5898 to 0.6072)

1.72 (1.56 to 1.88) 2.62 (2.38 to 2.89)

ARIC Black
Cohort

0.5735
(0.5245 to 0.6226)

1.22 (0.74 to 2.04) 2.07 (1.19 to 3.59)
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Figure 9: Calibration of High LDL PGS in ARIC cohorts: PGS scores remain well calibrated in

both ARIC cohorts.

https://www.zotero.org/google-docs/?oB7ZFY
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● This document was updated in November, 2022 to reflect updates in the methods used
to present low likelihood estimate results, as well as minor updates to the general
methods to be consistent with parameters used for the majority of reports developed
between 2020 and 2022.

● This document was updated in August, 2023 to reflect updated methods whereby genetic
ancestry is used to interpret polygenic score results instead of self-reported ancestry.

● This document was updated in September, 2023 to include validation of select PGS
using data from the ARIC study.


