

Annals of Medicine

ISSN: 0785-3890 (Print) 1365-2060 (Online) Journal homepage: www.tandfonline.com/journals/iann20

Prevalence and prognosis of sarcopenia in acute COVID-19 and long COVID: a systematic review and meta-analysis

Ying Xu, Jia-Wen Xu, You Wu, Li-Juan Rong, Li Ye, Oscar H. Franco, Ching-Wen Chien, Xiao-Ru Feng, Jia-Yu Chen & Tao-Hsin Tung

To cite this article: Ying Xu, Jia-Wen Xu, You Wu, Li-Juan Rong, Li Ye, Oscar H. Franco, Ching-Wen Chien, Xiao-Ru Feng, Jia-Yu Chen & Tao-Hsin Tung (2025) Prevalence and prognosis of sarcopenia in acute COVID-19 and long COVID: a systematic review and meta-analysis, Annals of Medicine, 57:1, 2519678, DOI: 10.1080/07853890.2025.2519678

To link to this article: https://doi.org/10.1080/07853890.2025.2519678

9	© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
+	View supplementary material 🗷
	Published online: 24 Jun 2025.
	Submit your article to this journal 🗷
hh	Article views: 1691
α	View related articles 🗷
CrossMark	View Crossmark data ☑
CrossMark	

ANNALS OF MEDICINE 2025, VOL. 57, NO. 1, 2519678 https://doi.org/10.1080/07853890.2025.2519678

RESEARCH ARTICLE

3 OPEN ACCESS

Prevalence and prognosis of sarcopenia in acute COVID-19 and long COVID: a systematic review and meta-analysis

Ying Xu^{a,b} , Jia-Wen Xu^c, You Wu^c , Li-Juan Rong^c, Li Ye^c, Oscar H. Franco^d , Ching-Wen Chien^c, Xiao-Ru Feng^c, Jia-Yu Chen^e and Tao-Hsin Tung^a

^aEvidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang Province, China; ^bMRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK; ^cInstitute for Hospital Management, School of Medicine, Tsinghua University, Beijing, China; ^dDepartment of Global Public Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; ^eDepartment of Environmental Systems Science (D-USYS), Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland

ABSTRACT

Background: A comprehensive investigation delineating the prevalence of sarcopenia across different infection phases, from acute COVID-19 to long COVID, is lacking. Meanwhile, the relationship between sarcopenia and adverse outcomes among COVID-19 patients remains inconsistent.

Materials and methods: A systematic search of MEDLINE/PubMed, Embase, Cochrane Library, Web of Science, and Scopus, before 22nd February 2025, was conducted to identify studies assessing sarcopenia prevalence in acute COVID-19 and long COVID. Random effects meta-analyses were performed to estimate the pooled prevalence of sarcopenia for acute COVID-19 and long COVID patients. Subgroup analyses stratified by assessment tool, region, income, hospitalization status, and age were performed. The associations between sarcopenia and COVID-19-related clinical outcomes were further quantified.

Results: A total of 39 studies with 6,982 individuals were included. The pooled prevalence of sarcopenia was 48.7% (95% confidence interval (CI): 39.6–57.9%) in acute COVID-19 and 23.5% (95% CI: 12.7–39.4%) in long COVID. In acute COVID-19 patients, sarcopenia was not significantly associated with length of stay (mean difference = 2.215, 95% CI: –0.004 to 4.433), mechanical ventilation (Odds ratio (OR) = 1.80, 95% CI: 0.84–3.85), admission to the intensive care unit (OR = 1.05, 95% CI: 0.63–1.77), or mortality (OR = 1.41, 95% CI: 0.86–2.32), but was significantly associated with tracheostomy (OR = 2.48, 95% CI: 1.28–4.82).

Conclusion: In conclusion, our findings indicate that sarcopenia is highly prevalent in acute COVID-19 and persists in a substantial proportion of long COVID patients, suggesting prolonged muscle loss beyond the acute phase. Future well-designed studies are needed to further investigate the association between sarcopenia and short-term and long-term prognostic outcomes in both acute and long COVID patients.

ARTICLE HISTORY

Received 3 October 2024 Revised 29 March 2025 Accepted 7 May 2025

KEYWORDS

Sarcopenia; COVID-19; long COVID; prevalence; prognosis; systematic review; meta-analysis

Introduction

The outbreak of coronavirus disease 2019 (COVID-19) has profoundly shaped the healthcare system and the entire world. Millions of people continue to suffer long-term sequelae of COVID-19 infection, a condition recognized as long COVID (LC) [1]. LC is a multisystemic condition generally defined as symptoms persisting for three months or more after acute COVID-19 infection, with incidence rates ranging from 10 to 70%

depending on the studied cohorts and the time of screening [2]. LC can occur in individuals of all ages, regardless of the severity of the initial infection or the presence of comorbidities [3]. LC patients experience a wide range of persistent signs and symptoms, such as cardiovascular and thrombotic diseases, cerebrovascular disease, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), dysautonomia, autoimmune conditions, and cognitive impairment [4]. Beyond its health implications, LC also imposes a substantial

CONTACT Tao-Hsin Tung a ch2876@gmail.com Evidence-Based Medicine Centre, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China

Supplemental data for this article can be accessed online at https://doi.org/10.1080/07853890.2025.2519678.

 $\ensuremath{\mathbb{C}}$ 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

socioeconomic burden, contributing to increased healthcare costs and reduced workforce productivity [5].

Sarcopenia, a condition characterized by progressive and generalized deterioration of skeletal muscle, including changes in muscle strength and function [6], has been widely recognized as a predictor of adverse outcomes among general older adults, such as frailty [7], falls [8], functional impairment [9], increased vulnerability [10], and mortality [11]. Although traditionally considered as a condition of the elderly, emerging evidence suggests that sarcopenia can develop at any age [11]. The European Working Group on Sarcopenia in Older People (EWGSOP) defines acute sarcopenia as incidental sarcopenia occurring within 6 months after stressful events, which is particularly prevalent among hospitalized patients [6]. Although multiple factors are associated with sarcopenia [12], COVID-19 infection has emerged as a potent trigger for its onset and progression [13]. COVID-19 patients frequently exhibit immune dysregulation that is mediated by an exaggerated inflammation response associated with cytokine storm or release syndrome [14]. This phenomenon has been linked to the development of sarcopenia, as reported in previous studies [15,16]. A study by Quaisar et al. [17] demonstrated that 26% of previously non-sarcopenic individuals developed sarcopenia following COVID-19 infection. Furthermore, our prior meta-analysis estimated that 48.0% of COVID-19 patients exhibited sarcopenia [18].

While previous findings highlight the high prevalence of sarcopenia among COVID-19 patients, two important knowledge gaps remain. First, the prevalence of sarcopenia specifically in LC patients has not been systematically synthesized, despite increasing concerns about its persistence and progression beyond the acute phase. Understanding this prevalence is essential for identifying at-risk populations and guiding post-acute rehabilitation strategies. Second, while sarcopenia has been linked to mortality in critically ill patients in the intensive care unit (ICU) [19], its prognosis on COVID-19related clinical outcomes remains unclear, with inconsistent results [20]. Investigating the value of sarcopenia in predicting the prognosis of COVID patients is crucial for prognostication and clinical decision-making. Therefore, in this meta-analysis, we aimed (1) to estimate the prevalence of sarcopenia among COVID-19 patients with different infection phases, and (2) to examine its association with clinical outcomes across these phases.

Materials and methods

This systematic review was performed following the 24-step guide [21] and Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [22] (Table S1). The review protocol was registered with PROSPERS (CRD42022339508).

Search strategy

Two independent investigators conducted a literature search in MEDLINE/PubMed, Embase, Cochrane Library, Web of Science, and Scopus without language restriction up to February 22nd, 2025. Relevant key terms were combined in the search strategy, which included 'coronavirus', 'coronavirus infections', 'COVID-19', 'SARS-CoV-2', 'severe acute respiratory syndrome', '2019-nCoV', 'sarcopenia', 'muscular atrophy', 'muscle weakness', 'muscle loss', 'muscle depletion', 'muscle reduction', 'muscle wasting', 'reduced muscle', 'loss of muscle', 'low muscle mass' and 'body composition'. The full search strategy is presented in the (Supplementary Materials Table S2).

Study selection

After the initial search and removal of duplicate literature, two independent reviewers conducted a screening for eligibility on the title and abstract of the literature, and the full text of potentially relevant studies was further evaluated if they satisfied the inclusion criteria. Conflicts were resolved by a third researcher.

Inclusion and exclusion criteria

Studies were included in our systematic review if they met the following criteria: (1) population: patients with acute COVID-19 or LC, (2) exposure: Covid-19 patients with sarcopenia, (3) control: Covid-19 patients without sarcopenia, (4) outcome: sarcopenia or risk of sarcopenia identified by validated assessment tools as the primary outcome, and (5) study designs: observational studies including both cross-sectional and longitudinal cohort studies. No restrictions were placed on language, country of origin, patient age, or gender. Conference abstracts, letters, comments, editorials, case reports, systematic reviews, and meta-analyses were excluded. Discrepancies during the screening process were resolved through consensus with a senior investigator.

Outcomes

The primary outcome of this meta-analysis was the pooled prevalence of sarcopenia among patients with COVID-19 across different infection phases, from acute COVID-19 to LC. The secondary outcomes were the length of stay (LOS), the need for mechanical

ventilation (MV) or tracheostomy, ICU admission, and mortality. These outcomes were selected based on their clinical relevance in assessing sarcopenia status and prognosis in COVID-19 patients.

Data extraction

Data were extracted by two independent authors using a standardized data extraction form. The following items of studies were extracted: first author, publication date, study location (country and World Health Organization [WHO] region), income level, study type, COVID confirmation, population setting, hospitalization status, sarcopenia assessment tools, total sample size, number of sarcopenia cases, infection phase, mean of age (if applicable, otherwise, the median of age was extracted), and clinical outcomes (if available in each included studies). Following independent data extraction, two researchers cross-checked all extracted data and resolved disagreements by consultation until a consensus was reached. Disagreements were resolved by recruiting a third author to review the data.

Quality assessment

All included studies were independently evaluated by two authors for the risk of bias, assessed separately for the primary outcome (prevalence of sarcopenia) and secondary outcomes (clinical outcomes) in line with previous meta-analyses [23]. For studies reporting sarcopenia prevalence among COVID-19 patients, we used an adapted Newcastle-Ottawa Quality Assessment Scale (NOS), as previously adapted by Modesti et al. [24]. Since most included studies were single-arm observational studies, we excluded non-applicable NOS sections (e.g. comparability and outcome assessment), to our needs (Table S3). This modified NOS has been previously applied in meta-analysis evaluating disease prevalence [25,26]. Studies scoring ≥3 points were considered to have a low risk of bias, while those scoring <3 points were classified as having a high risk of bias. For studies assessing clinical outcomes based on the presence of sarcopenia, we used an adapted NOS for cross-sectional studies (Table S4) and the standard NOS for cohort studies (Table S5). In cross-sectional studies, a score of ≥7 indicated a low risk of bias, while scores <7 indicated a high risk of bias. In cohort studies, a total score of 8 or 9 was considered low risk, while scores of 6 or 7 indicated moderate risk. Any disagreements in risk assessment were resolved through consensus and review by an experienced methodologist.

Statistical analysis

The estimate of sarcopenia was expressed as proportions (%) with corresponding 95% confidence intervals (CI). The prevalence of sarcopenia reported in the studies was pooled using the 'metaprop' programs as it allows the inclusion of studies with proportions equal to zero or 100% and avoids confidence intervals beyond the 0 to 1 range. As for investigating the impact of sarcopenia on clinical outcomes, we used the random effect generic inverse variance model to calculate Odds Ratios (OR) and 95% CI for dichotomous variables, and the mean difference (MD) and 95% CI were used for continuous variables. We evaluated heterogeneity between study-specific estimates using two methods [27]. First, the presence of heterogeneity was assessed using Cochran's Q-test. As this test is underpowered to detect moderate degrees of heterogeneity [28], a significance level of p < 0.10 was considered suggestive of heterogeneity. Second, we calculated the I² statistic to estimate what proportion of total variation across studies was due to heterogeneity rather than chance. Heterogeneity can be quantified as low, moderate, and high, with upper limits of 25%, 50%, and 75% for the I² value, respectively [29]. After completing the heterogeneity analysis, we chose the appropriate effects summary model to analyze according to the I² value. Given the I^2 value \geq 50%, the random effects model was used to pool the effect size. Otherwise, it would be replaced by a fixed effects model. According to the prevalence of sarcopenia in patients with COVID-19, to find out the source of heterogeneity in the data, we performed subgroup analyses stratified by assessment tool, WHO region, income level, hospitalization status, and age. For the primary outcome, a sensitivity analysis was performed with a 'leave-one-out' approach, in which all studies are removed one at a time to identify studies that may influence the primary analysis. We also evaluated the publication bias for primary outcome using both visual inspection of a funnel plot and the Egger regression test [30]. The threshold for statistical significance was 2-sided p < 0.05. All statistical analyses were performed using R software (version 4.3.3, R Foundation for Statistical Computing, Vienna, Austria).

Results

Selection process

A total of 7,208 references were initially identified through electronic databases, of which 1,037 were from MEDLINE/PubMed, 1,875 were from Embase, 963 were from Web of Science, 297 were from the Cochrane Library, and 3,036 were from Scopus. After removing

duplicates, 4,753 records remained and were screened. Title and abstract screening excluded 4,430 studies; the full texts of the remaining 311 studies were reviewed. Finally, 39 observational studies which met the eligibility criteria were included into the meta-analysis [31–69] (Figure 1).

Study characteristics

All the studies included in the present study were published between March 2021 and March 2024 (Table 1). A total of 6,982 COVID-19 patients were included in these studies with median/mean age ranging from 44.5 to 86.1 years. Twenty-six studies were conducted in the European Region (EURO); 8 in the Region of the Americas (AMRO); 4 in the Western Pacific Region (WPRO); and one in the Eastern Mediterranean Region (EMRO). Eighteen studies were retrospective cohort studies; 12

studies were prospective cohort studies; and nine studies were cross-sectional studies. 36 studies were conducted in a hospital-based setting; 2 in a rehabilitation unit setting; and one in mixed settings. Regarding the infection phase of COVID-19, 30 studies included 5,123 patients with acute COVID-19 while 9 studies included 1,859 patients with LC. As for the type of sarcopenia assessment tool, 7 used abdominal computed tomography (CT) body composition parameters; 7 used chest CT body composition parameters; 12 were based on Strength, Assistance with Walking, Rising from a Chair, Climbing Stairs, and Falls (SARC-F) guestionnaire; 5 on HGS measured using a digital hand dynamometer; and 8 on other methods such as bioelectrical impedance analysis (BIA), dual-energy X-ray absorptiometry (DXA), and short physical performance battery (SPPB); Table 2 provides a summary of the assessment methods, parameters, and cut-off values applied to all included studies.

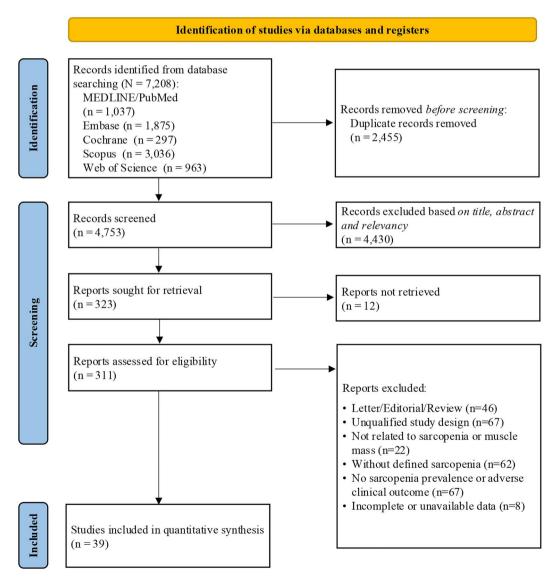


Figure 1. PRISMA (2020) diagram of study screening and selection.

(Continued)

Table 1. Basic information of included studies.

Study	Country	WHO	Income	Study	COVID Confirmation	Setting	Hospitalization status	Assessment tool	z	8	Infection phase	Age	Male	Outcome
(201 (0000) Full of 1	Turkov	, [JIMI	, 2] Ictional	Mixed boxing	T) tod)	130	77	01 01/07 0411.70	9	0 1 0	Declaration Declaration
ofuk et al. (2020) [53]	iurkey	EURO	OMIC	Ş	אן אר	ноѕрітаі	Mixed wards	cnest cl-scan	130	‡	Acute COVID-19	8	0.58	Intubation, Prolonged Hospital stay, Mortality,
Moctezuma-Velázquez et al.	Mexico	AMRO	UMIC	RCS	RT-PCR	Hospital	Mixed wards	Chest CT-scan	519	115	Acute COVID-19	51	0.64	Severity Mortality, ICU admission, MV,
Gil et al. (2021) [37]	Brazil	AMRO	OMIC	PCS	PCR	Hospital	Mixed wards	Dynamometer	174	28	Acute COVID-19	NR	0.49	Sevency Hospital stay
McGovern et al. (2021) [53]	¥	EURO	HIC	RCS	PCR or chest X-ray or	Hospital	Mixed wards	Abdominal CT-scan	63	39	Acute COVID-19	NR	0.48	ICU admission, Mortality, Severity ^f
Damanti et al. (2021) [36]	Italy	EURO	呈	RCS	RT-PCR	Hospital	ICN	Abdominal CT-scan	81	53	Acute COVID-19	59.3	0.88	Extubation, Complications,
Giraudo et al. (2021) [38]	Italy	EURO	¥	RCS	RT-PCR	Hospital	Mixed wards	Chest CT-scan	150	43	Acute COVID-19	61.3	69.0	Mortality ICU admission, Mortality,
Kara et al. (2021) [45]	Turkev	EURO	OMIC	CSS	PCR	Hospital	Nursing ward	Dynamometer	312	40	Acute COVID-19	46.1	0.55	Severity ^r Severity ^r
Gobbi et al. (2021) [39]	Italy	EURO	∃	PCS	RT-PCR	RC .	NR	BIA	34	70	Long COVID	N.	0.47	Rehabilitation outcomes
Wierdsma et al. (2021) [64]	뒫	EURO	呈	S	ZZ Z	Hospital	Mixed wards	SARC-F	219	159	Acute COVID-19	Z Z	Z Z	Nutritional status, risk of SP and nutrition related
Cuerda et al. (2021) [33]	Spain	EURO	HC	RCS	N N	Hospital	<u>D</u>	SARC-F	176	153	Acute COVID-19	60.3	0.72	Complaints Hospital stay, ICU stay, Tracheostomy, MV, Mortality
Riesgo et al. (2021) [60]	Spain	EURO	呈	CSS	RT-PCR	Hospital	NR	SARC-F	337	304	Acute COVID-19	86.1	0.5	Mortality, Hospital stay
Yi et al. (2021) [66]	China	WPRO	UMIC	RCS .	RT-PCR	Hospital	Mixed wards	Chest CT-scan	234	78	Acute COVID-19	44.5	0.57	
Kim et al. (2021) [46]	Korea	WPRO) H	S CS	RT-PCR	Hospital	Mixed wards	Chest CT-scan	121	59	Acute COVID-19	62	0.36	Hospital stay, Mortality, ICU admission, Severity ^f
Ma et al. (2021) [50]	China	WPRO	UMIC	PCS	RT-PCR	Hospital	NR	SARC-F	114	38	Acute COVID-19	69.5	0.5	Severity ^f
Ramos et al. (2022) [58]	Spain	EURO) H	PCS	N.	Hospital	Mixed wards	SARC-F	62	31	Long COVID	N N	Ä.	The prevalence of DRM and the risk of SP
Osuna-Padilla et al. (2022) [57]	Mexico	AMRO	UMIC	PCS	RT-PCR and suggestive tomographic findings	Hospital	ICN	Abdominal CT-scan	98	14	Acute COVID-19	48.6	0.73	MV, ICU stay, Tracheostomy, Hospital stay
González-Islas et al. (2022) [41]	Mexico	AMRO	NMIC	CSS	PCR	Hospital	NR	Dynamometer and	530	86	Long COVID	53.8	0.61	MV
Silva et al. (2022) [61]	Brazil	AMRO	OMIC	CSS	NR	Hospital	Mixed wards	SARC-F	89	20	Acute COVID-19	NR	NR	Risk of SP
Aguiar et al. (2022) [31]	Brazil	AMRO	NMIC	CSS	RT-PCR or laboratory serology	Hospital	Mixed wards	SARC-F	214	87	Acute COVID-19	61.8	0.48	Risk of SP
da Silva et al. (2022) [34]	Brazil	AMRO	UMIC	RCS	RT-PCR	Hospital	Nursing ward	SARC-F	102	75	Acute COVID-19	NR S	NR .	Mortality
Anmadiani et al. (2022) [32] McGovern J et al. (2022) [52]	ran CK an	EURO	H	S S	RI-PCK PCR or chest X-ray or	Hospital Hospital	N N	SAKC-F Abdominal CT-scan	106	34 85	Acute COVID-19 Acute COVID-19	89 89	0.58	Oxygen tnerapy, Hospital stay Systemic inflammation
Molwitz et al. (2022) [56]	Germany	EURO	HC	RCS	RT-PCR and CT scan of the thorax and abdomen	Hospital	ICU	Abdominal CT-scan	32	24	Acute COVID-19	64.4	0.63	MV, Mortality
Koehler at al. (2022) [47]	France	EURO	웆	RCS	RT-PCR	Hospital	Mixed wards	Abdominal CT-scan	162	83	Acute COVID-19	64.6	0.57	Hospitalization in intensive
Menozzi et al. (2022) [54]	Italy	EURO	呈	RCS	Positive SARS CoV-2 molecular test and	Hospital	Mixed wards	Chest CT-scan	272	113	Acute COVID-19	11	0.63	Care ICU admission, Mortality, Severity ^f
Martone et al. (2022) [51] Levy et al. (2022) [48]	Italy France	EURO	HC HC	PCS RCS	NR RT- PCR or radiological findings	Hospital Hospital	Mixed wards Mixed wards	Dynamometer Dynamometer and DXA	541 139	106	Long COVID Long COVID	53.1	0.49	Severity ⁵ , MV, Hospital stay Hospital stay, ICU admission, ICU stay, Tracheostomy, Saverity ⁵
Damanti et al. (2022) [35]	ltaly	EURO	HIC	CSS	NR T	Hospital	Mixed wards	Dynamometer	255	121	Acute COVID-19	29	9.0	Muscle ultrasound characteristics, measures of muscle function and nutritional status

Table 1. Continued.

Study	Country	WHO	Income	Study type	COVID Confirmation	Setting	Hospitalization status	Assessment tool	z	S	Infection phase	Age	Male	Outcome
Baptista et al. (2022) [59]	France	EURO	웊	PCS	PCR or serology	Hospital	Mixed wards	DXA	105	21	Long COVID	59.2	0.75	The frequency of long-term exercise capacity limitation and their factors
Graziano et al. (2022) [42]	Italy	EURO	₽	PCS	RT-PCR	Hospital	Mixed wards	BIA	151	104	Acute COVID-19	71	0.65	ICU admission, Hospital stay, Mortality
Gómez-Uranga et al. (2022) [40]	Spain	EURO	HC	CSS	PCR	Hospital	Mixed wards	SARC-F	101	33	Acute COVID-19	66.3	0.67	Hospital stay, Severity ^f , ICU admission
Yamamoto et al. (2022) [65] Surov et al. (2023) [62]	Japan Germany	WPRO	일 일	RCS RCS	P.C.R P.C.R	Hospital Hospital	Mixed wards Mixed wards	SPPB Abdominal CT-scan	23 173	110	Acute COVID-19 Acute COVID-19	59 61	0.74	Physical functions and ADLs Mortality, Intubation, Severity, ICLI admiceion
Grigioni et al. (2023) [43]	France	EURO	HIC	RCS	Positive nasopharyngal Hospital swab	Hospital	Mixed wards	Chest CT-scan	244	102	Acute COVID-19	62.2	0.55	In-Bospielly, i.co admission of stay > 23 days, Acquired Infection, ICU
lannaccone et al. (2023) [44]	Italy	EURO	₽	CSS	Positive swab for SARS-CoV-2	RC	Nursing ward	Dynamometer and	126	52	Acute COVID-19	69.5	9.0	Risk of SP
López-Sampalo et al. (2023) [49]	Spain	EURO	HC	PCS	RT-PCR or laboratory	Mixed	NR	Dynamometer	106	61	Long COVID	8.92	0.52	Risk of SP
Álvarez-Hernández et al. (2023) [67]	Spain	EURO	HIC	RCS	NR	Hospital	ICN	SARC-F	1869	25	Long COVID	60.7	0.7	weight, risk of malnutrition and SP, MNT, functional status, and HROol
Aykanat Yurtsever et al. (2024) [68]	Turkey	EURO	NMIC	RCS	NR	Hospital	Mixed wards	SARC-F	156	17	Long COVID	55	0.59	Risk of SP
Silva et al. (2024) [69]	Brazil	AMRO	UMIC	CSS	PCR	Hospital	Nursing ward	SARC-F and other tools	213	34	Acute COVID-19	57.4	0.64	Risk of SP

Abbreviations: SP, Sarcopenia; NL, Netherlands; the UK, The United Kingdom; WHO, World Health Organization; EURO, European Region; AMRO, Region of the Americas; WPRO, Western Pacific Region; MI-PCR, Reverse Lower-Middle Income Country; HIC, High Income Country; PCS, Prospective Cohort Study; RCS, Retrospective Cohort Study; CSS, Cross-Sectional Study; PCR, Polymerase Chain Reaction; RC, Rehabilitation Unit; ICU, Intensive Care Unit; CT, Computed Tomography; SARC-F, Strength, Assistance in walking, Rise from a chair, Climb stairs, and Falls; BIA, Bioelectrical Impedance Analysis; DXA, Dual-energy X-ray Absorptiometry; SPPB, Short Physical Performance Battery; SARS CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; COVID, Coronavirus Disease 2019; MV, Mechanical Ventilation; DRM, Disease Related Malnutrition; ADLs, Activities of Daily Living, MNT, Medical Nutrition Therapy; HRQoL, Health-Related Quality of Life; NR, Not Reported.

*WHO region and Income level were classified by the location (country) of the study, according to the criteria of WHO and the World Bank.
b Among 106 participants, 80 were hospitalized during an infection and 26 were not hospitalized during an infection.

'Mixed wards refer to ICU wards and nursing wards.

Data are given as the percentage of male in the total sample size. ^dData are given as mean or median.

fAny of the following were considered severe COVID-19 symptoms: (1) respiratory distress (≥30 breaths per min); (2) oxygen saturation at rest ≤93%; (3) ratio of the partial pressure of arterial oxygen (PaO₂) to a fractional concentration of oxygen-inspired air (fOO₂) ≤300 mmHg; (4) critical complications; (5) Admission into ICU; (6) The use of MV.

The initial number of patients was 199, but only 186 patients was assessed for the status after the 12 months post-discharge.

Table 2. Assessment tools, measurement parameters, and cut-off values of sarcopenia of the included studies.

First author, Year	Sarcopenia assessment tool	The investigated level/muscles	Sarcopenia parameters	Cut-off used
Ufuk et al. (2020) [63]	Chest CT-scan	Pectoralis muscle	PMI	First tertile of PMI values, Men: < 12.73 cm ² /m ² Women: < 9 cm ² /m ²
Moctezuma-Velázquez et al. (2021) [55]	Chest CT-scan	Every muscle on T12 level	SMI	Men: < 42.6 cm ² /m ² Women: < 30.6 cm ² /m ² Sourcesific testiles as threshold
Gil et al. (2021) [37] McGovern et al. (2021) [53]	Dynamometer Abdominal CT-scan	NR Every muscle on L3 level	HGS and vastus lateralis BMI and SMI	Men: BMI $<$ 25 kg/m² and SMI $<$ 43 cm²/m². or BMI $>$ 25 and SMI $<$ 53 cm²/m² Women: BMI $<$ 25 and SMI $<$ 41 cm²/m². or BMI $>$ 25 and
Damanti et al. (2021) [36]	Abdominal CT-scan	Every muscle on L1, L2 or L3 level; L3 were preferentially chosen when available	SMI	SMI < 41 cm ² /m ² According to vertebra levels and literature data
Giraudo et al. (2021) [38]	Chest CT-scan	The right paravertebral muscle at T12 level	The mean Hu value	Hu values < 30
Kara et al. (2021) [45]	Dynamometer	NR	HGS	Men: < 32 kg Women: < 19 kg
Gobbi et al. (2021) [39]	BIA	NR	ASM	According to EWGSOP2 criteria, Men: ASM < 20 kg Women: ASM < 15 kg
Wierdsma et al. (2021) [64]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Cuerda et al. (2021) [33]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Riesgo et al. (2021) [60]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Yi et al. (2021) [66]	Chest CT-scan	Every muscle at T12 level	SMI	NR
Kim et al. (2021) [46]	Chest CT-scan	Every muscle on T12 level	SMI	Men: $\leq 24 \text{ cm}^2/\text{m}^2$ Women: $\leq 20 \text{ cm}^2/\text{m}^2$
Ma et al. (2021) [50]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Ramos et al. (2022) [58] Osuna-Padilla et al. (2022) [57]	SARC-F Abdominal CT-scan	NR Every muscle on L3 level	SARC-F scale SMI	Total score ≥ 4 Men: BMI < 30 kg/m^2 and $SMI \le 52.3 \text{ cm}^2/\text{m}^2$, or BMI ≥ 30 and $SMI \le 54.3 \text{ cm}^2/\text{m}^2$ Women: BMI < 30 kg/m^2 and $SMI \le 38.6 \text{ cm}^2/\text{m}^2$ or BMI ≥ 30 and $SMI \le 46.6 \text{ cm}^2/\text{m}^2$
González-Islas et al. (2022) [41]	Dynamometer and BIA	NR	ASMM and HGS	(1) ASMM Me): < 20 kg Women: < 15 kg (2) HGS Men: < 27 kg Women: < 16 kg
Silva et al. (2022) [61]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Aguiar et al. (2022) [31]	SARC-F	NR	SARC-F scale	Total score ≥ 4
da Silva et al. (2022) [34]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Ahmadiani et al. (2022) [32] McGovern J et al. (2022) [52]	SARC-F Abdominal CT-scan	NR Every muscle on L3 level	SARC-F scale SMI	Total score ≥ 4 According to literature data
Molwitz et al. (2022) [56]	Abdominal CT-scan	Every muscle on L3 level	SMI	Men: < 52.4 cm ² /m ² Women: < 38.5 cm ² /m ²
Koehler at al. (2022) [47]	Abdominal CT-scan	Every muscle on L3 level	SMI	Men: BMI < 30 kg/m² and SMI <52.3 cm²/m² or BMI > 30 and SMI < 54.3 cm²/m² Women: BMI < 30 and SMI < 38.6 cm²/m² or BMI > 30 and SMI < 46.6 cm²/m²
Menozzi et al. (2022) [54]	Chest CT-scan	Every muscle on T12 level	SMA	Men: < 92.3 cm ² Women: 56.1 cm ²
Martone et al. (2022) [51]	Dynamometer	NR	HGS	Men: < 16 kg Women: < 27 kg
Levy et al. (2022) [48]	Dynamometer and DXA	NR	HGS and ALM	(1) HGS Men: < 27 kg Women: < 16 kg (2) ALM/Height Men: < 7.0 kg/m ² Women: < 5.5 kg/m ²
Damanti et al. (2022) [35]	Dynamometer	NR	HGS	Men: < 27 kg Women: < 16 kg
Baptista et al. (2022) [59]	DXA	NR	ASMMI	Men: < 7.26 Women: < 5.45
Graziano et al. (2022) [42]	BIA	NR	SMM and BMI	Men: < 1.05 kg/kg/m ² Women: < 0.71 kg/kg/m ²

Table 2. Continued.

First author, Year	Sarcopenia assessment tool	The investigated level/muscles	Sarcopenia parameters	Cut-off used
Gómez-Uranga et al. (2022) [40]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Yamamoto et al. (2022) [65]	SPPB	NA	SPPB score	SPPB score of ≤ 9
Surov et al. (2023) [62]	Abdominal CT-scan	Measurements of paraspinal, abdominal wall, and psoas muscles are usually performed at the L3 level.	SMI	Men: < 52.4 cm ² /m ² Women: < 38.5 cm ² /m ²
Grigioni et al. (2023) [43]	Chest CT-scan	Rectus abdominis, external oblique, internal oblique, latissimus dorsi, intercostal and erector spinae muscles on T12 level	SMI	Men: < 28.9 cm ² /m ² Women: < 20.8 cm ² /m ²
lannaccone et al. (2023) [44]	Dynamometer and BIA	NR	ASMMI and HGS	(1) ASMMI Men: < 20 kg Women: < 15 kg (2) HGS Men: < 27 kg Women: < 16 kg
López-Sampalo et al. (2023) [49]	Dynamometer	NR	HGS	Men: < 27 kg Women: < 16 kg
Álvarez-Hernández et al. (2023) [67]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Aykanat Yurtsever et al. (2024) [68]	SARC-F	NR	SARC-F scale	Total score ≥ 4
Silva et al. (2024) [69]	SARC-F and other tools	NR	SARC-F, HGS and CP	Men: Total score ≥ 4 and HGS < 35 kg and CP < 34 cm Women: Total score ≥ 4 and HGS < 20 kg and CP < 33 cm

Abbreviations: L3, The 3rd Lumbar Vertebra; T12, The 12th Thoracic Vertebra; EWGSOP, The European Working Group on Sarcopenia in Older People; PMI, Pectoralis Muscle Index; SMI, Skeletal Muscle Index; HGS, Handgrip Strength; BMI, Body Mass Index; Hu, Hounsfield Unit; ASM, Appendicular Skeletal Muscle Mass; SARC-F, Strength, Assistance in Walking, Rise from a Chair, Climb Stairs, and Falls; SMA, Skeletal Muscle Area; SMM, Skeletal Muscle Mass; ALM, Appendicular Lean Mass; ASMMI, Appendicular Skeletal Muscle Mass Index; SPPB, Short Physical Performance Battery; CP, Calf Circumference.

Quality of included studies

For the primary outcome, 36 studies had a low risk of bias (quality score > 3), while three studies had a high risk of bias (quality score \leq 3), primarily due to selection bias. Most studies had low non-respondent rates, employed validated assessment tools, and used proper statistical methods; However, few studies justified their sample size selection or used random sampling (Figure S1); For the secondary outcome, among the four included cross-sectional studies assessing clinical outcomes by sarcopenia status in COVID-19, three were considered to have a low risk of bias (quality score \geq 7), while one was considered to have a medium risk of bias (quality score < 7) (Figure S2). Among the 17 included cohort studies reporting clinical outcomes by sarcopenia status, 11 studies had a low risk of bias (quality score \geq 8), while six studies had a medium risk of bias (quality score < 8) (Figure S3).

Meta-analysis results

Pooled sarcopenia prevalence in acute COVID-19 and LC

Our meta-analysis of 30 studies assessing sarcopenia prevalence in acute COVID-19 patients estimated a pooled prevalence of 48.7% (95% CI: 39.6–57.9%; $I^2 = 96.71\%$, p < 0.05), indicating substantial heterogeneity

among studies (Figure 2). Similarly, our meta-analysis of 9 studies evaluating sarcopenia prevalence in LC patients estimated a pooled prevalence of 23.5% (95% CI: 12.7–39.4%; $I^2 = 94.79\%$, p < 0.05), also demonstrating high heterogeneity (Figure 2). A significant subgroup difference was observed between the acute COVID-19 and LC groups (p < 0.05).

Subgroup analyses

Separate subgroup analyses were conducted for sarcopenia prevalence in acute COVID-19 and LC patients, stratified by assessment tool, WHO region, income level, hospitalization status, and age.

In acute COVID-19 patients, significant subgroup differences were observed when stratified by assessment tool (p<0.05), WHO region (p<0.05), income level (p<0.05), and hospitalization status (p=0.04), while no significant difference was found for age (p=0.06) (Table S6).

In LC patients, no significant subgroup differences were observed across any stratification variables, including assessment tool (p=0.72), WHO region (p=0.44), income level (p=0.19), hospitalization status (p=0.59), and age (p=1.00) (Table S7).

Publication bias and sensitivity analysis

Separate evaluation of publication bias was conducted for sarcopenia prevalence in acute COVID-19 and LC

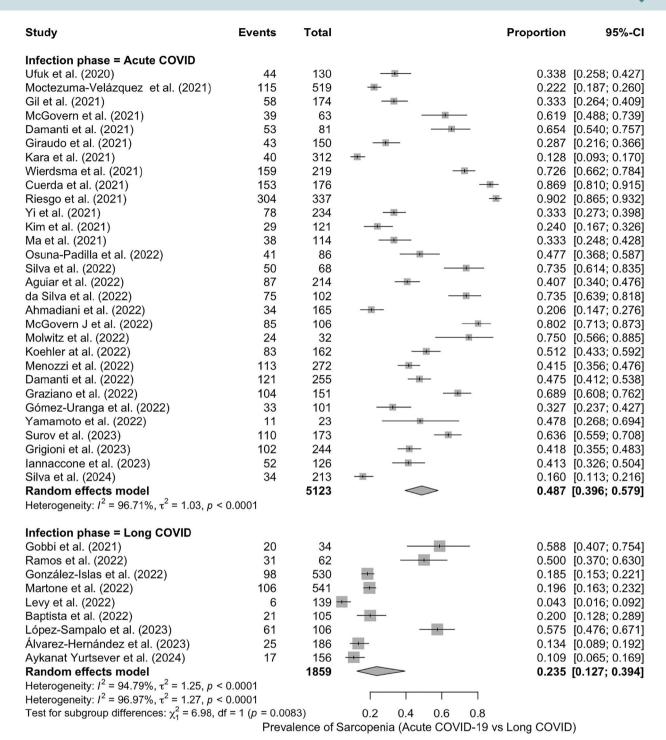


Figure 2. Prevalence of sarcopenia among acute COVID-19 and long COVID patients. (A) Prevalence of sarcopenia in acute COVID-19 patients. (B) Prevalence of sarcopenia in long COVID patients.

patients. There was no evidence of publication bias either in acute COVID-19 (Egger's test, p=0.07) or LC (Egger's test, p=0.68) (Figure 3). We also performed separate sensitivity analysis for sarcopenia prevalence in acute COVID-19 and LC patients. Sensitivity analyses by omitting each included study separately were largely consistent with the main analysis (Figures S4 and \$5).

Association between sarcopenia and clinical outcomes

The following five comparisons were performed for the meta-analysis of investigating the association between sarcopenia and clinical outcomes, including LOS, MV, tracheostomy, ICU admission, and mortality.

Six studies on patients with acute COVID-19 provided available information regarding the association

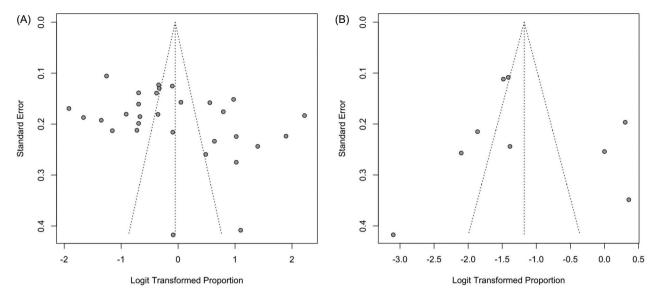


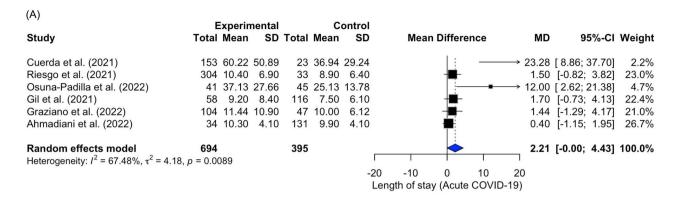
Figure 3. Funnel plots among acute COVID-19 and long COVID patients, classified by (A) acute COVID-19, and (B) long COVID.

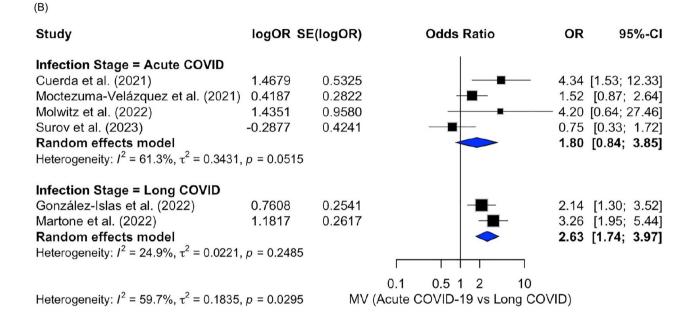
between sarcopenia and LOS. The meta-analysis showed that sarcopenia was not significantly associated with a prolonged LOS in patients with acute COVID-19 (MD = 2.215; 95% CI: -0.004 to 4.433; p=0.05). According to the I² statistic, moderate heterogeneity existed among the studies (I² = 67.48%, p=0.01, random-effect modeling) (Figure 4A).

Four studies on patients with acute COVID-19 and two studies on patients with LC provided data on the association between sarcopenia and MV. Our pooled analysis indicated that sarcopenia was not significantly associated with an increased risk of MV requirement in patients with acute COVID-19 (OR = 1.80, 95% CI: 0.84-3.85). According to the I² statistic, moderate heterogeneity was observed among the studies (I² = 61.3%, p=0.05, random-effects model) (Figure 4B). In contrast, our pooled analysis revealed that sarcopenia was significantly associated with a higher risk of MV requirement in patients with LC (OR = 2.63, 95% CI: 1.74-3.97). Low heterogeneity was observed among these studies (I² = 24.9%, p=0.25, random-effects model) (Figure 4B).

Two studies on patients with acute COVID-19 provided available information regarding the association between sarcopenia and the need for tracheostomy. Our pooled analysis indicated that sarcopenia was significantly associated with an increased risk of tracheostomy requirement in patients with acute COVID-19 (OR = 2.48, 95% CI: 1.28–4.82). According to the I^2 statistic, no heterogeneity was observed among the studies ($I^2 = 0\%$, p = 0.93, fixed-effects model) (Figure 4C).

Eight studies on patients with acute COVID-19 provided available information regarding the association


between sarcopenia and risk of admission to the ICU. The pooled analysis showed sarcopenia was not associated with an increased risk of admission to the ICU in patients with acute COVID-19 (OR = 1.05, 95% CI: 0.63–1.77). According to the I^2 statistic, moderate heterogeneity existed among the studies (I^2 = 58.8%, p=0.02, random-effect modeling) (Figure 4D).


Ten studies on patients with acute COVID-19 provided available information regarding the association between sarcopenia and mortality. The meta-analysis showed that sarcopenia was not associated with an increased risk of death in patients with acute COVID-19 (OR = 1.41, 95% CI: 0.86–2.32; p=0.17). According to the I² statistic, moderate heterogeneity existed among the studies (I² = 67.6%, p<0.05, random-effect modeling) (Figure 4E).

Discussion

The present study provides an up-to-date estimate by integrating the latest evidence on the prevalence of sarcopenia among COVID-19 patients with different infection phases, and its association with clinical outcomes. In this systematic review and meta-analysis of 6,982 patients with COVID-19, our results showed that the prevalence of sarcopenia among acute COVID-19 and LC patients is 48.7%, and 23.5%, respectively.

Skeletal muscle-related symptoms, including ME/CFS, muscle pain, muscle weakness, fatigue, and exercise intolerance, have been reported in both acute Covid-19 and LC, including ME/CFS, muscle pain, muscle weakness, fatigue, and exercise intolerance [70,71].

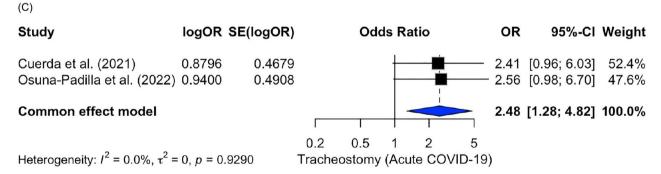
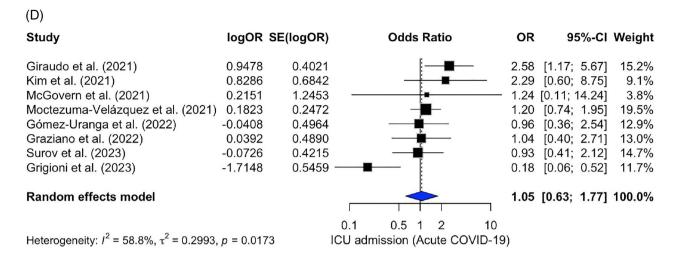



Figure 4. Forest Plot that demonstrates the association between sarcopenia and prognosis outcomes, classified by (A) length of stay; (B) Mechanical ventilation; (C) Tracheostomy; (D) Intensive care units' admission, and (E) Mortality.

Sarcopenia, characterized by loss of muscle mass, strength, and function, involves systematic skeletal muscle changes and is increasingly recognized as a consequence of COVID-19, rather than just an age-related condition. Most previous meta-analysis have focused on the overall prevalence of sarcopenia in COVID-19 patients [18,72], with limited attention to how prevalence varies across different infection phases. Identifying the distinct prevalence in each infection phase is crucial, as the pathophysiology of skeletal muscle alterations in acute COVID-19 and long COVID shares some similarities but also may differ in key mechanisms [73]. Our pooled results reveal a significant difference in sarcopenia prevalence between acute COVID (48.7%) and LC (23.5%) patients, suggesting a potential decline in prevalence over time. This may reflect partial muscle recovery or improvements in post-acute care interventions [73]. However, the

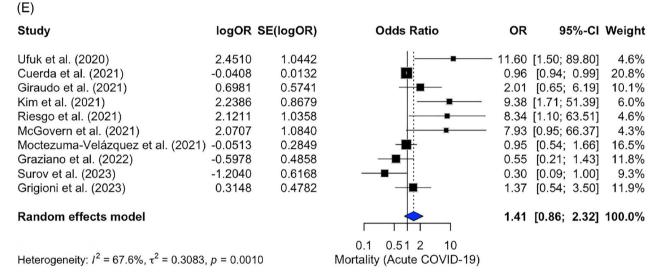


Figure 4. Continued.

persistence of sarcopenia in nearly a quarter of LC patients highlights the long-term musculoskeletal burden of COVID-19, indicating that muscle deterioration may extend well beyond the acute phase and contribute to prolonged functional impairment and reduced quality of life [74].

Our subgroup analyses revealed significant variations in sarcopenia prevalence among acute COVID-19 patients, suggesting that assessment tool, WHO region, income level, and hospitalization status may contribute to the heterogeneity observed in sarcopenia prevalence. Interestingly, no significant difference was observed between age groups, suggesting that multifactorial factors beyond ageing may contribute to sarcopenia [15]. However, the limited sample size may have reduced the statistical power to detect a true subgroup difference. Future research with larger sample size is needed to determine potential age-related effects. In contrast, no significant subgroup differences

were observed in LC patients, suggesting that the prevalence of sarcopenia in post-acute care settings may follow a similar trajectory across different demographic and clinical subgroups. This aligns with previous research suggesting that, aside from the loss of smell and taste, the prevalence and progression of long COVID symptoms were similar between individuals with confirmed and suspected COVID-19 [75]. In addition, our findings indicate that sarcopenia was not significantly associated with most clinical outcomes, suggesting that sarcopenia alone may not be a primary determinant of COVID-19 prognosis. However, this should not be considered conclusive, as the results may be influenced by inconsistencies in outcome definitions, variations in assessment tools, and the limited sample size within each group. Besides, due to the paucity of short-term clinical outcomes in LC patients, we were unable to pool outcome data in that group, except for MV. This is not surprising, as these

outcomes are more common during the acute phase of COVID-19, whereas LC patients are more likely to experience long-term health complications and quality-of-life impairments [76].

Several meta-analyses have examined sarcopenia in COVID-19 patients, but limitations remain. Our earlier meta-analysis estimated a 48.0% pooled prevalence, but could not distinguish between acute and LC or assess prognosis due to limited studies at that time [18]. Sumbal et al. focused on CT-derived sarcopenia, aligning with our subgroup analysis in acute COVID-19 patients, but included only 14 CT-based studies, limiting generalizability [72]. Pinto et al. found muscle quality and function, rather than muscle mass, predicted COVID-19 severity, but they assessed these separately, whereas we considered sarcopenia as an overall indicator of muscle health [77]. Siahaan et al. linked sarcopenia to COVID-19 severity and mortality [20], but their findings were based on only 9 studies before 2021, whereas our meta-analysis included more recent studies with larger sample size.

Clinical implications

Our findings reveal a high prevalence of sarcopenia in both acute COVID-19 and LC, emphasizing the need for early identification and long-term management. In acute COVID-19, where sarcopenia is most prevalent, immediate ambulation and neuromuscular electrical stimulation should be prioritized [78-80], particularly in ICU patients who are at the highest risk. Although sarcopenia prevalence declines over time, its persistence in nearly a quarter of LC patients suggests prolonged muscle loss, necessitating continued rehabilitation beyond hospital discharge. Given the challenge of post-exertional malaise in LC [81], rehabilitation should be gradual and individualized, integrating nutrition (e.g. nutritional supplements and dietary food supplements), functional mobility exercises, and resistance training [13]. In resource-limited settings, where structured rehabilitation may not be feasible, emphasis should be placed on low-cost, accessible interventions, such as dietary support [82], bodyweight exercises [83] and community-based programs [84]. Future research should explore scalable rehabilitation strategies to mitigate the long-term impact of sarcopenia across diverse healthcare settings.

Strengths and limitations

This meta-analysis provides the most comprehensive and up-to-date evidence on the prevalence of sarcopenia in COVID-19 patients with different infection

phases and its impact on prognosis. Key strengths include: (1) an updated meta-analysis and systematic review with the largest number of studies and sample size to date on this topic, (2) inclusion of diverse assessment tools, diagnostic criteria, parameters, and cut-off values, (3) a broad evaluation of the association between sarcopenia and COVID-19-related clinical outcomes. However, it still has certain limitations. Firstly, as all included studies were observational, selection and information bias were inevitable, potentially limiting the generalizability of our findings and contributing to the high observed heterogeneity. Second, only a small number of studies examined sarcopenia prevalence and its association with COVID-19-related clinical outcomes in long COVID patients, which may have led to insufficient statistical power to detect true associations. The lack of long COVID data also limits insights into the chronic effects of sarcopenia beyond the acute phase. Future research with larger representative sample sizes is needed to validate our findings in LC populations. Third, inconsistencies in outcome definitions and variations in sarcopenia assessment tools may also have caused bias in the analyses and contributed to the high heterogeneity. However, these methodological inconsistencies were largely unavoidable due to COVID-19 restrictions, which limited the use of standard diagnostic tools for sarcopenia. Future research should prioritize standardizing assessment tools and diagnostic criteria in post-acute care settings to improve the identification of high-risk patients. Fourth, while no significant associations were found for most outcomes in acute COVID-19, these results should not be considered conclusive. Given the observational nature of the included studies, causality cannot be determined, and residual confounding may exist due to unmeasured factors (e.g. medication use, lifestyle behaviors, and pre-existing comorbidities) may have influenced the observed estimates. Additionally, reverse causation cannot be ruled out, as severe COVID-19 itself may contribute to sarcopenia through prolonged hospitalization, systemic inflammation, and immobility [85]. Future longitudinal studies are needed to better establish the temporal relationship between sarcopenia and COVID-19 outcomes. Fifth, although we did not detect significant publication bias, restricting our analysis to published studies may still introduce reporting bias. The absence of grey literature and preprints may have led to an overrepresentation of significant findings. Lastly, data from Africa and other low- and middle-income countries (LMICs) remain scarce, with only one included study from an LMIC and none from Africa. This highlights a critical gap in global sarcopenia research, and future studies should

prioritize these regions to improve our understanding of sarcopenia burden and support global health equity.

Conclusions

In conclusion, our findings indicate that sarcopenia is highly prevalent in acute COVID-19 and persists in a substantial proportion of LC patients, suggesting prolonged muscle loss beyond the acute phase. Future well-designed studies are needed to further investigate the association between sarcopenia and short-term and long-term prognostic outcomes in both acute and LC patients.

Authors contributions

CRediT: Ying Xu: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Writing – original draft, Writing – review & editing; Jia-Wen Xu: Data curation, Investigation, Visualization, Writing – review & editing; You Wu: Writing – review & editing; Li-Juan Rong: Data curation, Investigation, Writing – review & editing; Li Ye: Data curation, Investigation, Writing – review & editing; Ching-Wen Chien: Writing – review & editing; Xiao-Ru Feng: Writing – review & editing; Tao-Hsin Tung: Methodology, Project administration, Supervision, Writing – review & editing.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

No sponsorship or funding was received in this study.

ORCID

Ying Xu http://orcid.org/0000-0001-9994-9889
You Wu http://orcid.org/0000-0001-9672-6129
Oscar H. Franco http://orcid.org/0000-0002-4606-4929

Data availability statement

The data will be made available on request from the corresponding author.

References

- [1] Greenhalgh T, Sivan M, Perlowski A, et al. Long COVID: a clinical update. Lancet. 2024;404(10453):707–724. doi:10.1016/S0140-6736(24)01136-X.
- [2] Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev

- Microbiol. 2023;21(3):133–146. doi:10.1038/s41579-022-00846-2.
- [3] Saito S, Shahbaz S, Luo X, et al. Metabolomic and immune alterations in long COVID patients with chronic fatigue syndrome. Front Immunol. 2024;15:1341843. doi:10.3389/fimmu.2024.1341843.
- [4] Elahi S, Rezaeifar M, Osman M, et al. Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function. Front Immunol. 2024;15:1443363. doi:10.3389/fimmu.2024.1443363.
- [5] Lancet T. Understanding long COVID: a modern medical challenge. Lancet (London, England). 2021;398(10302):725.
- [6] Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi:10.1093/ageing/afy169.
- [7] Roberts S, Collins P, Rattray M. Identifying and managing malnutrition, frailty and sarcopenia in the community: a narrative review. Nutrients. 2021;13(7):2316. doi:10.3390/nu13072316.
- [8] Bischoff-Ferrari HA, Orav JE, Kanis JA, et al. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among communitydwelling seniors age 65 and older. Osteoporos Int. 2015;26(12):2793–2802. doi:10.1007/s00198-015-3194-y.
- [9] Tolea MI, Galvin JE. Sarcopenia and impairment in cognitive and physical performance. Clin Interv Aging. 2015;10:663–671. doi:10.2147/CIA.S76275.
- [10] Wilson D, Jackson T, Sapey E, et al. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev. 2017;36:1–10. doi:10.1016/j.arr.2017.01.006.
- [11] Landi F, Cruz-Jentoft AJ, Liperoti R, et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing. 2013;42(2):203–209. doi:10.1093/ageing/afs194.
- [12] Gao Q, Hu K, Yan C, et al. Associated factors of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. Nutrients. 2021;13(12):4291. doi:10.3390/nu13124291.
- [13] Piotrowicz K, Gąsowski J, Michel J-P, et al. Post-COVID-19 acute sarcopenia: physiopathology and management. Aging Clin Exp Res. 2021;33(10):2887–2898. doi:10.1007/s40520-021-01942-8.
- [14] Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383(23):2255–2273. doi:10.1056/NEJMra2026131.
- [15] Morley JE, Kalantar-Zadeh K, Anker SD. COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020;11(4):863–865. doi:10.1002/jcsm.12589.
- [16] Manzano GS, Woods JK, Amato AA. Covid-19-associated myopathy caused by type I interferonopathy. N Engl J Med. 2020;383(24):2389–2390. doi:10.1056/NEJMc2031085.
- [17] Qaisar R, Karim A, Muhammad T, et al. The coupling between sarcopenia and COVID-19 is the real problem. Eur J Intern Med. 2021;93:105–106. doi:10.1016/j.ejim.2021.09.009.
- [18] Xu Y, Xu J-W, You P, et al. Prevalence of sarcopenia in patients with COVID-19: a systematic review and meta-analysis. Front Nutr. 2022;9:925606. doi:10.3389/ fnut.2022.925606.
- [19] Zhang XM, Chen D, Xie XH, et al. Sarcopenia as a predictor of mortality among the critically ill in an intensive

- care unit: a systematic review and meta-analysis. BMC Geriatr. 2021;21(1):339. doi:10.1186/s12877-021-02276-w.
- [20] Siahaan YMT, Hartoyo V, Hariyanto TI, et al. Coronavirus disease 2019 (Covid-19) outcomes in patients with sarcopenia: a meta-analysis and meta-regression. Clin Nutr ESPEN. 2022;48:158-166. doi:10.1016/j.clnesp.2022.01.016.
- [21] Muka T, Glisic M, Milic J, et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol. 2020;35(1):49-60. doi:10.1007/s10654-019-00576-5.
- [22] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):89. doi:10.1186/ s13643-021-01626-4.
- [23] Proietti M, Romiti GF, Raparelli V, et al. Frailty prevalence and impact on outcomes in patients with atrial fibrillation: a systematic review and meta-analysis of 1,187,000 patients. Ageing Res Rev. 2022;79:101652. doi:10.1016/j.arr.2022.101652.
- [24] Modesti PA, Reboldi G, Cappuccio FP, et al. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS One. 2016;11(1): e0147601. doi:10.1371/journal.pone.0147601.
- [25] Deng J, Zhou F, Hou W, et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci. 2021; 1486(1):90-111. doi:10.1111/nyas.14506.
- [26] Pappa S, Ntella V, Giannakas T, et al. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: a systematic review and meta-analysis. Brain Behav Immun. 2020;88:901-907. doi:10.1016/j.bbi.2020.05.026.
- [27] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2.
- [28] Thompson SG, Pocock SJ. Can meta-analyses be trust-Lancet. 1991;338(8775):1127-1130. doi:10. 1016/0140-6736(91)91975-z.
- [29] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557.
- [30] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629.
- [31] Aguiar GBd, Dourado KF, Andrade MISd, et al. Frequency and factors associated with sarcopenia prediction in adult and elderly patients hospitalized for COVID-19. Exp Gerontol. 2022;168:111945. doi:10.1016/j.exger.2022.111945.
- [32] Ahmadiani ES, Ariyanfar S, Soroush M, et al. Role of sarcopenia risk in predicting COVID-19 severity and length of hospital stay in older adults: a prospective cohort study. Br J Nutr. 2023;129(11):1888-1896.
- [33] Cuerda C, Sánchez López I, Gil Martínez C, et al. Impact of COVID-19 in nutritional and functional status of survivors admitted in intensive care units during the first outbreak. Preliminary results of the NUTRICOVID study. Clin Nutr. 2022;41(12):2934-2939. doi:10.1016/j.clnu.2021.11.017.
- [34] da Silva CL, Sousa TMM, de Sousa Junior JB, et al. Nutritional factors associated with mortality in hospitalized patients with COVID-19. Clin Nutr Open Sci. 2022;45:17-26. doi:10.1016/j.nutos.2022.08.001.

- [35] Damanti S, Cilla M, Tuscano B, et al. Evaluation of muscle mass and stiffness with limb ultrasound in COVID-19 survivors. Front Endocrinol (Lausanne). 2022;13:801133. doi:10.3389/fendo.2022.801133.
- [36] Damanti S, Cristel G, Ramirez GA, et al. Influence of reduced muscle mass and quality on ventilator weaning and complications during intensive care unit stay in COVID-19 patients. Clin Nutr. 2022;41(12):2965-2972. doi:10.1016/j.clnu.2021.08.004.
- [37] Gil S, Jacob Filho W, Shinjo SK, et al. Muscle strength and muscle mass as predictors of hospital length of stay in patients with moderate to severe COVID-19: a prospective observational study. J Cachexia Sarcopenia Muscle. 2021:12(6):1871-1878. doi:10.1002/icsm.12789.
- [38] Giraudo C, Librizzi G, Fichera G, et al. Reduced muscle mass as predictor of intensive care unit hospitalization in COVID-19 patients. PLoS One. 2021;16(6):e0253433. doi:10.1371/journal.pone.0253433.
- [39] Gobbi M, Bezzoli E, Ismelli F, et al. Skeletal muscle mass, sarcopenia and rehabilitation outcomes in post-acute COVID-19 patients. J Clin Med. 2021;10(23): 5623. doi:10.3390/jcm10235623.
- [40] Gómez-Uranga A, Guzmán-Martínez J, Esteve-Atiénzar PJ, et al. Nutritional and functional impact of acute SARS-CoV-2 infection in hospitalized patients. J Clin Med. 2022;11(9):2424. doi:10.3390/jcm11092424.
- [41] González-Islas D, Sánchez-Moreno C, Orea-Tejeda A, et al. Body composition and risk factors associated with sarcopenia in post-COVID patients after moderate or severe COVID-19 infections. BMC Pulm 2022;22(1):223. doi:10.1186/s12890-022-02014-x.
- [42] Graziano E, Peghin M, De Martino M, et al. The impact of body composition on mortality of COVID-19 hospitalized patients: a prospective study on abdominal fat, obesity paradox and sarcopenia. Clin Nutr ESPEN. 2022;51:437-444. doi:10.1016/j.clnesp.2022.07.003.
- [43] Grigioni S, Lvovschi V-E, Tamion F, et al. Low thoracic skeletal muscle index is associated with negative outcomes in 244 patients with respiratory COVID-19. Clin Nutr. 2023;42(2):102-107. doi:10.1016/j.clnu.2022.11.011.
- [44] Iannaccone S, Brugliera L, Spina A, et al. Sarcopenia is a frequent disease in SARS-COV-2 infection. J Rehabil Med Clin Commun. 2023;6:2222. doi:10.2340/jrmcc. v6.2222.
- [45] Kara Ö, Kara M, Akın ME, et al. Grip strength as a predictor of disease severity in hospitalized COVID-19 patients. Heart Lung. 2021;50(6):743-747. doi:10.1016/j. hrtlng.2021.06.005.
- [46] Kim J-W, Yoon JS, Kim EJ, et al. Prognostic implication of baseline sarcopenia for length of hospital stay and survival in patients with coronavirus disease 2019. J Gerontol A Biol Sci Med Sci. 2021;76(8):e110-e6. doi:10.1093/gerona/glab085.
- [47] Koehler J, Boirie Y, Bensid L, et al. Thoracic sarcopenia as a predictive factor of SARS-COV2 evolution. Clin Nutr. 2022;41(12):2918-2923. doi:10.1016/j.clnu.2022.01.022.
- [48] Levy D. Giannini M. Oulehri W. et al. Long term follow-up of sarcopenia and malnutrition after hospitalization for COVID-19 in conventional or intensive care units. Nutrients. 2022;14(4):912. doi:10.3390/nu14040912.
- [49] López-Sampalo A, Cobos-Palacios L, Vilches-Pérez A, et al. COVID-19 in older patients: assessment of

- post-COVID-19 sarcopenia. Biomedicines. 2023;11(3):733. doi:10.3390/biomedicines11030733.
- [50] Ma Y, He M, Hou L-S, et al. The role of SARC-F scale in predicting progression risk of COVID-19 in elderly patients: a prospective cohort study in Wuhan. BMC Geriatr. 2021;21(1):355. doi:10.1186/s12877-021-02310-x.
- [51] Martone AM, Tosato M, Ciciarello F, et al. Sarcopenia as potential biological substrate of long COVID-19 syndrome: prevalence, clinical features, and risk factors. J Cachexia Sarcopenia Muscle. 2022;13(4):1974–1982. doi:10.1002/jcsm.12931.
- [52] McGovern J, Al-Azzawi Y, Kemp O, et al. The relationship between frailty, nutritional status, co-morbidity, CT-body composition and systemic inflammation in patients with COVID-19. J Transl Med. 2022;20(1):98. doi:10.1186/s12967-022-03300-2.
- [53] McGovern J, Dolan R, Richards C, et al. Relation between body composition, systemic inflammatory response, and clinical outcomes in patients admitted to an urban teaching hospital with COVID-19. J Nutr. 2021;151(8):2236–2244. doi:10.1093/jn/nxab142.
- [54] Menozzi R, Valoriani F, Prampolini F, et al. Impact of sarcopenia in SARS-CoV-2 patients during two different epidemic waves. Clin Nutr ESPEN. 2022;47:252–259. doi:10.1016/j.clnesp.2021.12.001.
- [55] Moctezuma-Velázquez P, Miranda-Zazueta G, Ortiz-Brizuela E, et al. Low thoracic skeletal muscle area is not associated with negative outcomes in patients with COVID-19. Am J Phys Med Rehabil. 2021;100(5):413–418. doi:10.1097/PHM.000000000001716.
- [56] Molwitz I, Ozga AK, Gerdes L, et al. Prediction of abdominal CT body composition parameters by thoracic measurements as a new approach to detect sarcopenia in a COVID-19 cohort. Sci Rep. 2022;12(1):6443. doi:10.1038/s41598-022-10266-0.
- [57] Osuna-Padilla IA, Rodríguez-Moguel NC, Rodríguez-Llamazares S, et al. Low muscle mass in COVID-19 critically-ill patients: prognostic significance and surrogate markers for assessment. Clin Nutr. 2022;41(12):2910–2917. doi: 10.1016/j.clnu.2022.02.019.
- [58] Ramos A, Joaquin C, Ros M, et al. Impact of COVID-19 on nutritional status during the first wave of the pandemic. Clin Nutr. 2022;41(12):3032–3037. doi:10.1016/j. clnu.2021.05.001.
- [59] Ribeiro Baptista B, d'Humières T, Schlemmer F, et al. Identification of factors impairing exercise capacity after severe COVID-19 pulmonary infection: a 3-month follow-up of prospective COVulnerability cohort. Respir Res. 2022;23(1):68. doi:10.1186/s12931-022-01977-z.
- [60] Riesgo H, Castro A, Del Amo S, et al. Prevalence of risk of malnutrition and risk of sarcopenia in a reference hospital for COVID-19: relationship with mortality. Ann Nutr Metab. 2021;77(6):324–329. doi:10.1159/000519485.
- [61] Silva J, Giglio BM, Lobo PCB, et al. Neutrophil-to-lymphocyte ratio is not associated with risk of sarcopenia in elderly COVID-19 patients. Rev Esp Geriatr Gerontol. 2022;57(6):325–329. doi:10.1016/j.regg.2022.09.010.
- [62] Surov A, Thormann M, Kardas H, et al. Visceral to subcutaneous fat ratio predicts short-term mortality in patients with Covid 19. A multicenter study. Br J Radiol. 2023;96(1144):20220869. doi: 10.1259/ bjr.20220869.

- [63] Ufuk F, Demirci M, Sagtas E, et al. The prognostic value of pneumonia severity score and pectoralis muscle area on chest CT in adult COVID-19 patients. Eur J Radiol. 2020;131:109271. doi:10.1016/j.ejrad.2020.109271.
- [64] Wierdsma NJ, Kruizenga HM, Konings LA, et al. Poor nutritional status, risk of sarcopenia and nutrition related complaints are prevalent in COVID-19 patients during and after hospital admission. Clin Nutr ESPEN. 2021;43:369–376. doi:10.1016/j.clnesp.2021.03.021.
- [65] Yamamoto S, Sakai Y, Matsumori K, et al. Clinical outcomes and prevalence of sarcopenia in patients with moderate to severe COVID-19. J Clin Med. 2022;11(21):6578. doi:10.3390/jcm11216578.
- [66] Yi X, Liu H, Zhu L, et al. Myosteatosis predicting risk of transition to severe COVID-19 infection. Clin Nutr. 2022;41(12):3007–3015. doi:10.1016/j.clnu.2021.05.031.
- [67] Álvarez-Hernández J, Matía-Martín P, Cáncer-Minchot E, et al. Long-term outcomes in critically ill patients who survived COVID-19: the NUTRICOVID observational cohort study. Clin Nutr. 2023;42(10):2029–2035. doi:10.1016/j. clnu.2023.08.008.
- [68] Aykanat Yurtsever B, Yurtsever C, Atasoy V. Incidence and risk factors of sarcopenia in hospitalized survivors of COVID-19; a retrospective cohort study. J Infect Dev Ctries. 2024;18(1):14–20. doi:10.3855/jidc.18287.
- [69] Silva DMS, Valadão TA, Caporosi C, et al. Risk factors associated with acute sarcopenia in patients hospitalized with COVID-19. J Nutr Metab. 2024;2024:7857489–7857486. doi:10.1155/2024/7857489.
- [70] Carfi A, Bernabei R, Landi F, Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. Jama. 2020;324(6):603–605. doi:10.1001/jama.2020.12603.
- [71] Scheibenbogen C, Wirth KJ. Key pathophysiological role of skeletal muscle disturbance in post COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): accumulated evidence. J Cachexia Sarcopenia Muscle. 2025;16(1):e13669. doi:10.1002/jcsm.13669.
- [72] Sumbal R, Sumbal A, Ali Baig MM. Which vertebral level should be used to calculate sarcopenia in covid-19 patients? A systematic review and meta-analysis. Clin Nutr ESPEN. 2023;56:1–8. doi:10.1016/j.clnesp.2023.04.022.
- [73] Soares MN, Eggelbusch M, Naddaf E, et al. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle. 2022;13(1):11–22. doi:10.1002/jcsm.12896.
- [74] Kirwan R, McCullough D, Butler T, et al. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. Geroscience. 2020;42(6):1547–1578. doi:10.1007/s11357-020-00272-3.
- [75] Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38: 101019. doi:10.1016/j.eclinm.2021.101019.
- [76] Li J, Zhou Y, Ma J, et al. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID. Signal Transduct Target Ther. 2023;8(1):416. doi:10.1038/s41392-023-01640-z.
- [77] Pinto FCS, Andrade MF, Gatti da Silva GH, et al. Function over mass: a meta-analysis on the importance of skeletal muscle quality in COVID-19 patients. Front Nutr. 2022;9:837719. doi:10.3389/fnut.2022.837719.

- [78] Sommers J, Engelbert RHH, Dettling-Ihnenfeldt D, et al. Physiotherapy in the intensive care unit: an evidence-based, expert driven, practical statement and rehabilitation recommendations. Clin Rehabil. 2015; 29(11):1051-1063. doi:10.1177/0269215514567156.
- [79] Sommers J, Klooster E, Zoethout SB, et al. Feasibility of exercise testing in patients who are critically ill: a prospective, observational multicenter study. Arch Phys Med Rehabil. 2019;100(2):239-246. doi:10.1016/j.apmr.2018.07.430.
- [80] Burgess LC, Venugopalan L, Badger J, et al. Effect of neuromuscular electrical stimulation on the recovery of people with COVID-19 admitted to the intensive care unit: a narrative review. J Rehabil Med. 2021:53(3): irm00164. doi:10.2340/16501977-2805.
- [81] Appelman B, Charlton BT, Goulding RP, et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun. 2024;15(1):17. doi:10.1038/ s41467-023-44432-3.

- [82] McKendry J, Currier BS, Lim C, et al. Nutritional supplements to support resistance exercise in countering the sarcopenia of aging. Nutrients. 2020;12(7):2057. doi:10.3390/nu12072057.
- [83] Yamada M, Kimura Y, Ishiyama D, et al. Synergistic effect of bodyweight resistance exercise and protein supplementation on skeletal muscle in sarcopenic or dynapenic older adults. Geriatr Gerontol Int. 2019;19(5): 429-437. doi:10.1111/ggi.13643.
- [84] Li M-L, Kor PP-K, Sui Y-F, et al. Health maintenance through home-based interventions for communitydwelling older people with sarcopenia during and after the COVID-19 pandemic: a systematic review and meta-analysis. Exp Gerontol. 2023:174:112128. doi:10. 1016/j.exger.2023.112128.
- [85] Wang Y, Tan S, Yan Q, et al. Sarcopenia and COVID-19 outcomes. Clin Interv Aging. 2023;18:359–373. doi:10.2147/CIA.S398386.