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A B S T R A C T

Epidemiological data from as early as the 1930s documented a dramatic racial disparity in prostate cancer 
incidence, survival, and mortality rates among Black men—a trend that persists to this day. Black men are 
disproportionately burdened by prostate cancer, developing the disease at younger ages, facing more aggressive 
and lethal forms, and ultimately experiencing double the mortality rate of men of European descent. Investi
gating the multifactorial contributors to this racial disparity has been extensive, but results have often been 
inconsistent or inconclusive, making it difficult to pinpoint clear correlations. However, there is strong evidence 
suggesting that vitamin D deficiency is significantly associated with lethal forms of prostate cancer. This is 
particularly important given that Black men are at a higher risk for both vitamin D deficiency and developing 
aggressive, lethal prostate cancer, presenting a double disparity. The disparity in prostate cancer and vitamin D 
extends to Black men outside the US, but most of the studies have been done in African American men. Un
derstanding the available evidence on vitamin D deficiency and its influence on prostate cancer biology may 
reveal new opportunities for prevention and therapeutic intervention.

1. Introduction

With 1.5 million new cases globally in 2022, prostate cancer (PCa) 
stands as the second most common cancer and the fifth leading cause of 
cancer mortality among men [102]. Although prevalence is high, PCa 
cases typically have some of the best prognoses with 5-year survival 
ranging from 70 % to 100 % [70]. PCa mortality rates in Black men are 
approximately two to four times higher than those in every other racial 
and ethnic group [102]. Among all cancer types, PCa presents the most 
significant racial health disparity, with African American men facing an 
increased risk of lethal PCa compared to individuals of other racial 
backgrounds in the US [65]. One factor that may partially explain this 
disparity is vitamin D deficiency, as the higher levels of melanin in the 
skin of Black men reduce their ability to synthesize vitamin D from 
sunlight exposure. Vitamin D is a steroid hormone precursor known for 
its essential roles in maintaining bone health, supporting immune 
function, regulating cell differentiation and proliferation, and exhibiting 
anti-inflammatory and anticancer properties.

In this review, we provide a comprehensive and up-to-date summary 
of dietary intake, case-control, and epidemiological studies investigating 

the role of vitamin D in PCa. This synthesis provides an overview of the 
current understanding of vitamin D’s influence on PCa risk, progression, 
aggressiveness, and mortality, including a dedicated section focusing on 
research involving Black men to address the double disparity in PCa 
outcomes. Finally, we explore why nearly half of the compiled studies 
report null findings, discussing inherent study design limitations that 
complicate the control of vitamin D intake and status, potentially 
obscuring true associations and underestimating its impact.

1.1. The biological importance of vitamin D

Vitamin D, often called the “sunshine vitamin,” is a steroid hormone 
rather than a true vitamin, as it can be synthesized in the skin upon 
exposure to sunlight [69]. It’s primarily recognized for maintaining 
calcium homeostasis and bone health, but its role extends to regulating 
cell fate, proliferation, and differentiation [34]. The cutaneous precur
sor, vitamin D3, undergoes UV exposure-induced hydroxylation to form 
25-hydroxyvitamin D (25(OH)D), the primary circulating metabolite 
and the clinical standard for assessing vitamin D status. Additional hy
droxylation produces the active ligand, 1,25-dihydroxyvitamin D (1,25 
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(OH)2D), which binds to the vitamin D receptor (VDR) to regulate the 
transcription of hundreds of genes. Vitamin D can also directly affect the 
epigenome and regulate over 1000 genes, either through VDR binding or 
indirect pathways (Carlberg 2019).

Vitamin D deficiency affects individuals across all age groups, with 
prevalence varying based on factors such as geographical location, 
season, and population demographics (Holick 2006a). Certain groups 
are at a higher risk, including those with limited sun exposure, low di
etary intake, and individuals with darker skin tones, as melanin reduces 
the skin’s ability to synthesize vitamin D (Holick 2006a; Institute of 
Medicine (US) 2011). To maintain healthy serum levels, individuals in 
these at-risk groups must ensure adequate vitamin D intake through diet 
or supplements. Vitamin D status is determined by serum concentrations 
of 25(OH)D, which reflect both endogenous production and dietary 
intake (EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) 
2016). Although the ideal serum 25(OH)D levels and specific thresholds 
for deficiency, insufficiency, and sufficiency remain subjects of debate, a 
general consensus holds that serum levels of 50 nmol/L (20 ng/mL) or 
higher are adequate for bone and overall health in individuals without 
risk factors for deficiency.

1.2. The role of vitamin D in prostate health and cancer risk

Accumulated evidence from cellular, molecular and developmental 
studies suggests that vitamin D plays a significant role in maintaining 
prostate health, with emerging research exploring whether insufficient 
levels of vitamin D could influence PCa development. Like other organs, 
prostate cells express VDR and is responsive to 1,25(OH)2D (Miller 
et al., 1992; Skowronski et al., 1993; Peehl et al., 1994; Barreto et al., 
2000). In normal human prostate tissue, VDR is expressed in both the 
epithelial and stromal cell types [57,58]. VDR levels vary with both age 
and prostate zone, with the highest expression observed in middle-aged 
men (ages 20–50), while younger and older individuals show a decline 
in expression [58], suggesting that vitamin D plays a critical role in 
maintaining prostate homeostasis throughout adulthood. This empha
sizes the importance of the vitamin D axis in prostate biology and sup
porting the hypothesis that vitamin D deficiency—modulated by factors 
such as age and race—may increase the risk of developing PCa 
(Schwartz & Hulka 1990).

Beyond its essential roles in bone health, vitamin D has profound 
effects on cellular functions that are critical in PCa biology. Vitamin D 
regulates cell proliferation by modulating cell cycle and promoting 
apoptosis [119,34]. It also has a crucial role in immune regulation, 
impacting both innate and adaptive immunity, which likely contribute 

to benefits in cancer prevention activities [119,34]. In PCa cells, vitamin 
D has a prodifferentiating effect, that supports a less malignant and more 
normal phenotype [34], inducing differentiation markers such as PSA, 
cytokeratins, and E-cadherin (Gocek and Studzinski 2009a), further 
underscoring its influence on cellular behavior. The regulation of 
various physiological processes, including cell proliferation, immune 
modulation, and differentiation, highlights the non-calcemic functions 
of vitamin D [108,119] are summarized in Fig. 1.

1.3. Implications of vitamin D in prostate cancer

In the 1990s an hypothesis emerged, linking vitamin D deficiency to 
increased PCa risk, thus factors such as age, race, and residence in re
gions associated with reduced sunlight exposure—could contribute to 
vitamin D deficiency and, consequently, PCa risk (Schwartz & Hulka 
1990). This hypothesis gained support from observations that men in the 
United States experienced higher rates of PCa mortality based on their 
geographic location, particularly their distance from the equator 
(Hanchette and Schwartz 1992). Furthermore, men diagnosed with PCa 
during the summer or fall, when circulating vitamin D levels are higher, 
tended to have better prognoses (Robsahm et al., 2004). Following the 
initial study that connected reduced sunlight exposure to increased PCa 
mortality (Hanchette and Schwartz 1992), there has been three decades, 
of epidemiological research on this topic has encompassed a wide array 
of studies, including prospective cohort studies, case-control studies, 
clinical trials, Mendelian randomization studies, and meta-analyses. We 
performed a comprehensive literature review of these studies and they 
are summarized in Supplemental TABLE I and discussed in this review.

2. Method

A literature search was performed to identify various studies and 
clinical trials examining the relationship between vitamin D and pros
tate cancer. We focused on studies that reported serum levels of vitamin 
D or dietary intake in relation to prostate cancer incidence, mortality, or 
advancement. The NCBI PubMed database was used to retrieve relevant 
articles through a search strategy incorporating the following combi
nation of terms: (vitamin D or 25(OH)D or 1,25(OH)2D) AND (prostate 
cancer or prostate) AND (prospective cohort or cohort or case-control or 
meta-analyses or pilot studies or clinical trials). Only articles written in 
or translated to English were included. Duplicate articles were ignored. 
Each article was reviewed if title and abstract appeared relevant. 
Reviewing included confirmation that the study reported an association 
between vitamin D and prostate cancer. Comprehensive cross- 

Fig. 1. Vitamin D regulates cancer processes in prostate and inflammatory cells. The active form of vitamin D, 1,25(OH)2D, acts on cancer cells via various 
mechanisms including inhibiting proliferation, inflammation, invasion/metastasis, and angiogenesis as well as enhancing apoptosis and differentiation. Adapted 
from [34,71].
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referencing was utilized in addition to the database search strategy to 
identify additional studies that were not captured in the initial search. 
For eligible studies, the following data was extracted: author(s); publi
cation year; characteristics of study population including age, race, 
location, health, cohort/case number; percentage of vitamin D deficient 
population (if reported); overall findings/conclusions of the relationship 
between vitamin D and prostate cancer; study type/design; and overall 
role of vitamin D in relation to prostate cancer.

3. Results

3.1. Human studies on vitamin D and prostate cancer

Many epidemiological studies have explored the relationship be
tween vitamin D status and PCa. Geographic and seasonal variations in 
sunlight exposure, which affect cutaneous vitamin D synthesis, provided 
early links to PCa mortality (Hanchette & Schwartz 1992). Since that 
seminal finding, there have been observational studies that examine 
associations between PCa risk and/or mortality by vitamin D dietary 
intake or blood levels of vitamin D metabolites, which are summarized 
in Table 1.

3.2. Dietary intake studies

To evaluate the relationship between vitamin D dietary intake and 
PCa risk, Tseng et al. found a weak inverse association, indicating that 
higher dietary vitamin D intake was weakly linked to a reduced risk of 
PCa [116]. However, most other diet-focused cohort studies reported no 
significant associations [15,22,45,50,59,90]. Case-control studies 
showed a similar pattern, with Deneo-Pellegrini et al. noting a weak 
association between high dietary vitamin D intake and decreased PCa 
risk [28], while several other case-control studies found no such link 
[120,56,21,60,109,51,88]. More recently, Batai et al. identified a pro
tective effect of high dietary vitamin D in reducing the risk of aggressive 
PCa [10]. In addition to cohort and case-control studies, two 
meta-analyses [42,52] and one Mendelian randomization study [25]
also reported null associations. The lack of agreement among these 
diet-focused studies may stem from differences in study design, low 
vitamin D in most diets, and population characteristics such as location, 
race, and age, which will be discussed in greater detail later.

3.3. Serum vitamin D and prostate cancer incidence and risk

Numerous investigations examine the influence of circulating serum 
vitamin D metabolite levels on PCa incidence and risk. The findings from 
prospective cohort studies of men are mixed, with some reporting a 
protective effect of 25(OH)D serum levels on overall PCa risk [24,74, 
91], and others indicating a U-shaped curve [123] or no significant as
sociation at all [103,107,86,9]. Given the high prevalence of PCa, it is 
unlikely that vitamin D levels alone are modifiers of incidence.

More than 35 case-control studies have investigated the relationship 
between serum vitamin D levels and PCa. While most of these studies 
show no association between vitamin D status and PCa risk [2,8,18,26, 
33,39,43,48,54,62,66,82,88,89,93,94,95,101,111,114,126], character
istics such as location, race, and age, which will be a few studies have 
reported inverse associations indicating protective effects of vitamin D 
on PCa risk [3,5,6,30,75,117,118] or positive associations suggesting 
harmful effects of vitamin D status [122,16,4,53,72]. Meta-analyses 
investigating the relationship between PCa risk and vitamin D tend to 
align with the null associations [127,38,42] or indicate harmful asso
ciations [125,40]. These discrepancies may arise from variations in how 
vitamin D levels are standardized across studies based on factors like the 
season of blood collection, geographic location, age, and other variables, 
along with the exclusion of dietary vitamin D intake and sun exposure 
data.

3.4. Epidemiological studies on vitamin D and prostate cancer 
aggressiveness and mortality

Although modulation of overall PCa risk by vitamin D is unclear, a 
protective effect is more consistently observed when examining the risk 
of metastatic or aggressive PCa [32,44,49,79,80,83]. The majority of 
case-control studies focusing on the risk of aggressive or advanced PCa 
lean toward supporting a protective role [2,3,43,63,75,95,128], rather 
than a harmful one [4,94].

When examining the relationship between vitamin D status and PCa 
mortality, findings from prospective cohort studies are inconsistent. 
Some studies indicate that sufficient vitamin D levels are associated with 
lower PCa mortality [113,17,29,32,74], while others report no signifi
cant associations [36,47,49,100]. Notably, case-control studies focusing 
on PCa mortality consistently show that higher serum 25(OH)D levels 
are linked to a reduced risk of lethal PCa [101,128,73]. Meta-analyses 
also support the protective effect of adequate vitamin D levels in 
reducing PCa mortality [104,27].

3.5. Case-control studies

Case-control studies have found evidence supporting a protective 
effect of vitamin D against PCa, with some studies showing a beneficial 
link [10,61,62] and others reporting no significant association [62,88]. 
Jackson et al. reported a potential harmful effect of 25(OH)D serum 
levels for Black Jamaican men with PCa. However, Jamaica is a 
low-latitude region where the population generally has sufficient 
vitamin D due to high solar UVB exposure, resulting in fewer vitamin 
D-deficient participants [53]. In several studies focusing on African 
American men, higher levels of 25(OH)D were linked to a reduced risk of 
high-grade PCa [61] and a lower risk of non-aggressive PCa [62]. 
Additionally, research shows that African American men with greater 
dietary vitamin D intake had a lower overall risk of PCa [10].

3.6. Mendelian randomization studies

Mendelian randomization (MR) studies are a powerful tool used to 
infer causal relationships between an exposure (e.g., vitamin D levels) 
and an outcome (e.g., PCa risk). By leveraging genetic variants as 
proxies for an exposure, MR studies help minimize confounding factors 
and reverse causation, common limitations of observational studies. In 
the context of vitamin D and PCa, results largely suggest that there is no 
causal relationship between genetically predicted vitamin D levels and 
PCa risk, including aggressive subtypes, as summarized in Table 2.

A large MR study with over 22,000 PCa cases from multiple cancer 
consortia found no significant association between genetically deter
mined (25(OH)D) concentrations and PCa risk [55]. While the possi
bility of modest or clinically insignificant effects could not be entirely 
excluded, this study concluded that screening for and supplementing 
vitamin D at the population level is unlikely to reduce prostate cancer 
incidence [31]. Similarly, a UK Biobank study with over 46,000 cancer 
cases, including PCa, also reported no association between genetically 
predicted vitamin D levels and PCa risk or mortality [85]. Another study 
utilizing a larger set of vitamin D-associated genetic variants (74 SNPs) 
reinforced null findings, suggesting that lower vitamin D concentrations 
are unlikely to be a causal risk factor for PCa [84]. Additionally, the 
largest genome-wide association datasets to date found no evidence of a 
causal relationship between circulating 25(OH)D and PCa risk, even 
with increased statistical power [25]. Although these MR studies do not 
support a causal role for vitamin D in PCa risk, the potential for modest 
or non-linear effects in specific subpopulations with profound vitamin D 
deficiency cannot be ruled out. Future research should focus on these 
high-risk groups and further investigate the biological mechanisms 
involved.
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Table 1 
Observational studies investigating the role of vitamin D on prostate cancera.b.

Observational Studies

VitD Role Author/Year Population VitD Deficient Population (%) Overall Findings Study Type

Protective Tseng et al., 

[116]35 

(Edward 
[44])36 

Tretli et al., 

[113]37 

[74]38 

Fang et al., 

[32]39 

Pazdiora et al., 

[91]40 

Der et al., 

[29]41 

Murphy et al., 

[79]42 

Brändstedt 
et al. [17]43 

Mondul et al., 

[77]44 

Nyame et al., 

[83]45 

Nelson et al., 

[80]46 

Deneo-Pellegrini 

et al., [28]47 

Ahonen et al., 

[3]48 

Tuohimaa et al., 

[117]49 

Li et al., 

[63]50 

Mikhak et al., 

[75]51 

Tuohimaa et al., 

[118]52 

Gilbert et al., 

[43]53 

Kristal et al., 

[61]54 

Atoum et al., 

[6]55 

Deschasaux et al., 

[30]56 

([10], 201)57 

Yuan et al., 

[128]58 

Amiri et al., 

[5]59 

Song et al., 

[104]60 

([27], 20)61

(n = 3612) (88 % 
white race)35, 
(n = 1095 cohort 
used for model; 
n = 47800 model 
cohort)36, 
(n = 1194)38, 
(n = 262)40 

Potential PCa 
(n = 667)42 

White cigarette 
smokers with PCa 
(n = 1000 
cases)44 

PCa (n = 160 
cases)37, 
(n = 1822 
cases)39 

, (n = 16535 
cases)41, 
(n = 943)43, 
(n = 190 cases)45, 
(n = 155 cases)46, 
(n = 175 cases/ 
n = 233 matched 
control)47, 
(n = 149 cases/ 
n = 566 matched 
controls)48, 
(n = 622 cases/ 
n = 1451 
matched controls 
1:4)49, 
(n = 492 cases/ 
n = 664 matched 
control)50, 
(n = 684 cases/ 
n = 692 matched 
control) (>90 % 
white)51, 
(n = 132 cases/ 
n = 456 matched 
controls)52, 
(n = 1447 cases/ 
n = 1449 
matched control) 
(98.9 % self- 
identified 
white)53, 
(n = 1731 cases +
n = 3203 
cohort)54, 
(n = 124 cases/ 
n = 100 matched 
control)55, 
(n = 129 cases/ 
n = 167 matched 
control)56, 
(n = 699 cases/ 
n = 958 
controls)57, 
(n = 111 cases/ 
n = 150 matched 
control)59 

Advanced PCa 
(n = 156 cases/ 
n = 156 matched 
control)58 

Prospective 
cohort studies 
(n = 7 studies)60 

Retrospective or 
prospective 

Not reported35,36,40,43,47,49,57,59,60,61 

8 % of controls53 

~11.5 % of cases45 

~23 % of controls48 

16 % of cohort (<26 nmol/L)44 

12.7 % of controls (<37.5 nmol/L)51 

~50 % of controls (<40 nmol/L)52 

~25 % of cohort (<44 nmol/L)39 

10 % of cohort (<46 nmol/L)38 

~25 % of controls (<46.2 nmol/L)58 

18.1 % of cohort (<50 nmol/L)37 

19 % of controls (<50 nmol/L)50 

> 25 % of cases and ~30 % of cohort (<50 nmol/L)54 

~34 % of initial cohort (<50 nmol/L)41 

~40 % of cohort (<50 nmol/L)42 

54.5 % of controls (<50 nmol/L)56 

~60 % of cases (<50 nmol/L)46 

83 % of controls (<50 nmol/L)55

PCa 
risk35,40,42,47,48,49,51,52,53,54,55,56,57,59 

Advanced/aggressive/lethal PCa 
risk36,45,46,48,50,51,53,54,57,58 

mPCa risk39 

PCa mortality risk37,38,43,60,61 

PCa incidence38 

PCa survival41,44 

Tumor stage42 

Gleason Grade42

Prospective cohort 
study35,36,37,38,39,40,42,43,58 

Cohort study41,44,46 

Nested cohort 
study45,48,49,50,51,52,53,54,56 

Case-control 
study47,55,57,59 

Meta-analysis60,61

(continued on next page)
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Table 1 (continued )

Observational Studies

VitD Role Author/Year Population VitD Deficient Population (%) Overall Findings Study Type

cohort studies 
(n = 10 studies; 
n = 10394 
cases)61

Null (E. [45])1 

(J. M. [22])2 

Berndt et al., 

[15]3 

Baron et al., 

[9]4 

Holt et al., 

[50]5 

Kristal et al., 

[59]6 

Skaaby et al., 

[103]7 

Gupta et al., 

[47]8 

(J. M. [21])9 

Jacobs et al., 

[54]10 

Faupel-Badger 

et al., [33]11 

Holt et al., 

[51]12 

Paller et al., 

[88]13 

Shahvazi et al., 

[98]14 

Freedman et al., 

[36]15 

Park et al., 

[90]16 

Ordóñez-Mena 

et al., [86]17 

Shui et al., 

[100]18 

Stephan et al., 

[107]19 

Braun et al., 

[18]20 

Key et al., 

[56]21 

Vlajinac et al., 

[120]22 

Ma et al., 

[66]23 

Kristal et al., 

[60]24 

Tavani et al., 

[109]25 

Travis et al., 

[111]26 

Trump et al., 

[114]27 

Barnett et al., 

[8]28 

Yaturu et al., 

[126]29 

Heath et al., 

[48]30 

Huncharek et al., 

[52]31 

Yin et al., 

[127]32 

Gandini et al., 

[38]33 

Gilbert et al., 

[42]34

healthy 
(n = 47781)1, 
(n = 454) (>85 % 
white)3, 
(n = 1294 
cases)5, 
(n = 9559)6, 
(n = 5866 men)7, 
(n = 7493)15, 
(n = 4124)17, 
(n = 672)4 

Male cigarette 
smokers 
(n = 27062)2 

White male 
cigarette smokers 
with PCa and 
matched controls 
(n = 296 cases/ 
n = 297 matched 
control)11 

PCa (n = 4404)16 

stage IV PCa 
(n = 125 cases)8 

PCa and matched 
controls (n = 526 
cases/n = 536 
matched control 
pairs)9, (n = 83 
cases/n = 166 
matched controls 
1:2)10, (n = 827 
cases/n = 787 
matched control 
pairs)12, (n = 90 
cases/n = 62 
matched control 
pairs)13, (n = 61 
cases/n = 122 
controls)20, 
(n = 328 cases/ 
n = 328 
controls)21, 
(n = 101 cases/ 
n = 202 
controls)22, 
(n = 231 cases/ 
n = 410 
controls)23, 
(n = 605 cases/ 
n = 592 
controls)24, 
(n = 1294 cases/ 
n = 1451 
controls)25, 
(n = 652 cases/ 
n = 752 
control)26, 
(n = 170 cases/ 
n = 100 
controls)27, 
(n = 297 cases +
n = 1433 cohort) 
(>90 % white 
race)28 

, (n = 479 cases/ 
n = 479 
control)29 

, (n = 833 cases/ 
n = 1664 

Not 
reported1,2,3,14,16,5,6,7,9,12,20,21,22,23,24,25,29,30,31,32,33,34 

~15 % of controls17 

~25 % of controls (<37 nmol/L)11 

~35 % of cohort (<50 nmol/L)15 

25.6 % of cohort (<50 nmol/L)8 

~15 % of controls (<50 nmol/L)10 

> 25 % of controls (<50 nmol/L)18 

~50 % of cohort (<50 nmol/L)19 

~38 % of controls (<50 nmol/L)26 

31 % of controls (<50 nmol/L)27 

25 % of controls (<50 nmol/L)28 

~68 % of controls (<75 nmol/L)13

PCa risk1,2,3,5, 

6,7,9,10,11,12,13,16,17,19,20, 

21,22,23,24,25,26,27,28,29,30,31,32,33,34 

Lethal PCa18 

Progression14 

PCa mortality15 

PCa survival8

Prospective cohort 
study1,2,3,6,7,15,16,17,18,19, 

30 

Cohort study5,8 

Case-control 
study20,21,22,9,24,25,12,27, 

29,13 

Nested case-control 
study23, 10,11,26,28 

Retrospective29 

Meta-analysis31,32,33,14,34

(continued on next page)
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Table 1 (continued )

Observational Studies

VitD Role Author/Year Population VitD Deficient Population (%) Overall Findings Study Type

controls)30 

Lethal PCa and 
controls (n = 518 
cases/n = 2986 
controls)18 

Single arm studies 
and randomized 
controlled trials 
(n = 22 studies)14 

Initial and repeat 
biopsies 
(n = 480)19 

Observational 
studies (n = 6 
studies)31 

Prospective 
cohort studies and 
nested case- 
control studies 
(n = 11 
studies)32, 
(n = 11 studies; 
n = 3956 
cases)33, (n = 25 
studies)34

Harmful Wong et al., 

[123]62, 
Albanes et al., 

[4]63, 
Brändstedt et al., 

[16]64, 
Meyer et al., 

[72]65, 
[122]66, 
Jackson et al., 

[53]67, 
Xu et al., 

[125]68, 
[40]69

(n = 4208) 
(>95 % 
Caucasian)62 

Cigarette smokers 
with PCa 
(n = 1000 cases/ 
n = 1000 
matched 
control)63, 
(n = 950 cases/ 
n = 964 matched 
control)66 

PCa with matched 
controls (n = 943 
case/n = 838 
matched 
control)64, 
(n = 2106 cases/ 
n = 2106 
matched control 
pairs)65, (n = 146 
cases/n = 191 
controls) 
(predominantly 
black)67 

Prospective 
cohort studies and 
nested case- 
control studies 
(n = 21 studies; 
n = 11941 
cases)68, (n = 19 
studies; 
n = 12786 
cases)69

Not reported64,68,69 

< 5 % of controls65 

~33 % of controls (<25 nmol/L)63,66 

~20 % of cohort (<50 nmol/L)62 

~13 % of controls (<50 nmol/L)67

PCa risk62,63,64,65,66,67,68,69 

Aggressive PCa risk63
Prospective cohort study62 

Nested case-control 
study63,64,65,66 

Case-control study67 

Meta-analysis68,69

Null/ 
Protective

Holt et al., 

[49]70, 
Cheney et al., 

[24]71, 
Corder et al., 

[26]72, 
Gann et al., 

[39]73, 
Nomura et al., 

[82]74, 
Shui et al., 

[101]75, 
Schenk et al., 

[95]76, 

PCa (n = 1476 
cases) (~90 % 
white race)70, 
(n = 90 black and 
n = 91 white 
cases/n = 90 
black and n = 91 
white matched 
control)72, 
(n = 232 cases/ 
n = 414 matched 
controls)73, 
(n = 136 cases/ 
n = 136 matched 

Not reported74,75,76 

8.4 % of cohort70 

~13 % of controls (<25 nmol/L)77 

81.1 % of controls (<50 nmol/L)78 

6.5 % of controls (<37.5 nmol/L)73 

13.3 % of controls (<37.5 nmol/L)72 

~75 % of cohort (<50 nmol/L)71

PCa risk71,72,73,74,75,76,77,78 

Progression/recurrence/mortality70 

Aggressive PCa risk70 

Lethal PCa75 

Gleason Score76

Prospective cohort 
study70,71,72 

Nested case-control 
study73,74,75,76,77,78

(continued on next page)
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Table 1 (continued )

Observational Studies

VitD Role Author/Year Population VitD Deficient Population (%) Overall Findings Study Type
Layne et al., 

[62]77, 
Acikgoz et al., 

[1]78

controls)74, 
(n = 1260 cases/ 
n = 1331 
matched control 
pairs) (>95 % 
white)75, 
(n = 1695 cases/ 
n = 1682 
matched 
control)76, 
(n = 226 cases/ 
n = 452 matched 
controls)77, 
(n = 52 cases/ 
n = 211 matched 
controls)78 

(n = 2003)71

Protective/ 
Harmful

Meyer et al., 

[73]79 

Miles et al., 

[76]80 

Steck et al., 

[106]81 

Travis et al., 

[112]82

PCa (n = 2259 
cases/n = 2120 
matched 
control)79, 
(n = 1695 cases/ 
n = 1682 
matched 
control)80, 
(n = 1200 
cases)81 

Prospective 
cohort studies and 
nested case- 
control studies 
(n = 19 studies; 
n = 13462 cases/ 
n = 20261 
controls)82

Not reported80 

4 % of controls79 

~7 % of controls82 

~47 % of cohort (<50 nmol/L)81

PCa risk79,80,82 

PCa aggressiveness81,82 

Mortality79

Prospective case-control 
study79 

Prospective cohort study81 

Nested case-control 
study80 

Collaborative analysis82

Null/ 
Harmful

Platz et al., 

[93]83 

Ahn et al., 

[2]84 

Park et al., 

[89]85 

Sawada et al., 

[94]86

PCa (n = 460 
cases/n = 460 
matched control) 
(>90 % white)83, 
(n = 749 cases/ 
n = 781 matched 
control)84, 
(n = 201 cases/ 
n = 402 matched 
controls)86 

invasive PCa 
(n = 329 cases/ 
n = 656 matched 
controls)85

Not reported86 

11.3 % of controls (<37.5 nmol/L)83 

~20 % of controls (<42.5 nmol/L)84 

~16 % of controls (<50 nmol/L)85

PCa risk83,84,85,86 

Aggressive PCa risk84 

Advanced PCa86

Nested case-control 
study83,84,85,86

a Studies ordered in subsections by study result: Null, Protective, Harmful, Mixed.
b For consistency, the percentage of study population with vitamin D deficiency is based on controls only with < 30 nmol/L as standard deficiency definition (unless 

otherwise noted). Serum concentrations of 25(OH)D given in ng/mL were converted to nmol/ L, using the conversion factor (1 ng/mL = 2.5 nmol/L).

Table 2 
Mendelian randomization studies investigating the role of vitamin D on prostate cancera.b.

Mendelian Randomization Studies

VitD Role Author/Year Population VitD Deficient 
Population (%)

Endpoint Study Type

Null Ong et al., [85]1 

Jiang et al., [55]2 

Cheng et al., [25]3 

Ong et al., [84]4

UKB1,3 and PRACTICAL1 (n = 86726 cases/n = 194384 
controls) 
PRACTICAL2,4 consortium (n = 79148 cases/n = 61106 
controls)

Not reported PCa risk Mendelian 
randomization study

Null/ 
Protective

Dimitrakopoulou et al., 
[31]

GAME=ON, GECCO, and PRACTICAL consortiums; 
(n = 22898 cases/n = 23054 controls)

Not reported Total or aggressive 
PCa risk

Mendelian 
randomization study

a Studies ordered in subsections by study result: Null, Mixed.
b For consistency, the percentage of study population with vitamin D deficiency is based on controls only with < 30 nmol/L as standard deficiency definition (unless 

otherwise noted). Serum concentrations of 25(OH)D given in ng/mL were converted to nmol/ L, using the conversion factor (1 ng/mL = 2.5 nmol/L).
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3.7. Pilot/clinical trials

Pilot studies and clinical trials provide a unique opportunity to 
evaluate the potential effects of vitamin D intervention on PCa risk, 
progression, survival, and prostate specific antigen (PSA) levels. Ran
domized, placebo-controlled trials of vitamin D supplementation on PCa 
and overall survival in PCa patients have shown mixed results, as 
summarized in Table 3. Circulating levels of PSA is commonly used as a 
biomarker to monitor prostate cancer progression and recurrence. Some 
studies indicate a protective effect, with improved survival and reduced 
PSA levels as outcomes [121,14], while others report no significant 
findings [41,67,7]. Although, Scher et al. [96] found that high-dose 
calcitriol (1,25(OH)2D) supplementation was linked to reduced sur
vival in PCa patients, this was a treatment study that used calcitriol, the 
active form of vitamin D, which is not reflective of the normal circu
lating form that has been linked to reduced PCa risk.

Meta-analyses of these trials, excluding Manson et al. [67], suggest 
no substantial difference in PSA response or survival rates between 
vitamin D-supplemented patients and placebo groups [98]. Most of 
these randomized studies did not report patients’ serum vitamin D 

levels, and the PCa treatments varied, leaving room for the possibility 
that vitamin D may still offer protective benefits.

Shahvazi et al. evaluated 16 single-arm clinical trials without pla
cebo controls to examine vitamin D’s impact on PSA levels or response 
rates. The results were nearly split: half suggested a protective associa
tion, with vitamin D supplementation linked to reduced PSA levels or a 
weak positive impact [11,20,35,81,92,110,115], while the other half 
showed no significant effect of vitamin D on reducing PSA levels [12,13, 
19,64,78,87,97,105]. Despite the diversity in study populations, PCa 
stages, and prior therapies, the Shahvazi et al. meta-analysis demon
strated a statistically significant improvement of 19 % in PCa outcomes 
with vitamin D supplementation, regardless of chemotherapy use. 
Though the trials showed considerable variability in design, vitamin D 
forms, doses, and treatment protocols, the overall evidence points to a 
meaningful protective role of vitamin D in slowing disease progression 
in men with PCa.

3.8. Racial disparities in both vitamin D status and prostate cancer risk

Interpreting the impact of vitamin D supplementation on PCa in 

Table 3 
Pilot and clinical studies investigating the role of vitamin D on prostate cancera.b.

Pilot Studies and Clinical Trials

VitD Role Author/Year Population VitD Deficient Population (%) Endpoint Study Type

Protective Gross et al., [46]13 

Beer et al., [11]14 

Tiffany et al., 

[110]15 

Woo et al., 

[124]16 

Flaig et al., [35]17 

Trump et al., 

[115]18 

Petrioli et al., 

[92]19 

(J. S. [20])20 

Newsom-Davis et al., 

[81]21 

Marshall et al., 

[68]22 

Shamseddine et al., 

[99]23 

Wagner et al., 

[121]24 

Galunska et al., 

[37]25

Suspicion for PCa (n = 53)25 

PCa (n = 7 cases)13, (n = 15)16, (n = 44 
cases)22, (n = 63) (>80 % white race)24 

mPCa (n = 26 cases)21 

mCRPC (n = 37 cases)14, (n = 26 cases)19, 
(n = 19 cases)20 

CRPC (n = 24 cases)15, (n = 34 cases)17, 
(n = 43 cases)18, (n = 23 cases)23

Not 
reported13,14,15,16,18,19,20,21,23 

25 % of cases (<20 nmol/L)22 

~9 % of cohort (<37.5 nmol/ 
L)17 

~20 % of cases (<50 nmol/L)24

PSA13,15,16,17,18,19,20,21,23,24 

PCa risk25 

Progression14,15,17,18,22 

Survival14

Clinical trial21 

Phase I/II clinical trial15 

Phase II14,16,18.19,20,22,24 

Pilot study25 

Non-randomized pilot trial 
Prospective16,22 

Randomized24 

Double-blind24 

Open label13,22

Null Osborn et al., 

[87]1 

Beer et al., [13]2 

Liu et al., [64]3 

Beer et al., [12]4 

Morris et al., [78]5 

Schwartz et al., 

[97]6 

Attia et al., [7]7 

Srinivas, Feldman. 

[105]8 

Chadha et al., 

[19]9 

Gee et al., [41]10 

Chandler et al., 

[23]11 

Manson et al., 

[67]12

PCa (n = 14 cases)1, (n = 22 cases)2 

CRPC (n = 20 cases)3, (n = 18 cases)6, 
(n = 70 cases) (>90 % white race)7, 
(n = 18 cases)9 

mPCa (n = 17 cases)4 

progressive PCa (n = 31 cases)5 

recurrent PCa (n = 21 cases)8 

HGPIN or PCa (n = 31 cases) (>95 % 
white race)10 

healthy black men (n = 105)11 

healthy men (n = 12786 men)12

Not reported1,2,3,4,7,8,9,10,11 

12 % of cohort6 

~12 % of cohort (<50 nmol/ 
L)12

PSA1,2,4,6,7,8,9,11 

PCa progression3,5,10 

Survival7 

PCa risk12

Phase I clinical trial2,4,5,6 

Phase II clinical trial1,3,6,7,8,9,10 

Randomized7,10,11,12 

Double-blind7,11,12 

Single arm8 

Open label8,10 

Prospective11 

Placebo-controlled11,12

Harmful Scher et al., 
[96]

mCRPC (n = 953 cases) Not reported Survival Phase III, open-label, 
randomized clinical trial

Null/ 
Protective

Beer et al., [14] mPCa (n = 250 cases) Not reported PSA 
Survival

Phase II, double-blinded, 
randomized clinical trial

a Studies ordered in subsections by study result: Protective, Null, Harmful, Mixed.
b For consistency, the percentage of study population with vitamin D deficiency is based on controls only with < 30 nmol/L as standard deficiency definition (unless 

otherwise noted). Serum concentrations of 25(OH)D given in ng/mL were converted to nmol/ L, using the conversion factor (1 ng/mL = 2.5 nmol/L).

A. Duraki et al.                                                                                                                                                                                                                                  Journal of Steroid Biochemistry and Molecular Biology 247 (2025) 106675 

8 



Black men remains difficult, as most clinical trials have primarily 
involved white participants. Skin pigmentation originally evolved as an 
adaptive mechanism to protect against the harmful effects of intense 
solar UVB radiation in lower latitude regions, helping to prevent severe 
sunburn, DNA damage, and the degradation of skin folate (Ames, Grant, 
and Willett 2021; P. Jones et al., 2018). However, as populations 
migrated to higher latitudes where UVB exposure is significantly 
diminished, skin pigmentation reduced cutaneous synthesis of vitamin 
D, resulting in vitamin D deficiency and potentially contributing to 
adverse health outcomes, which led to loss of pigmentation as pop
ulations evolved (Ames, Grant, and Willett 2021). Data from the Na
tional Health and Nutrition Examination Survey (2001–2010) showed 
that Blacks had the highest prevalence of deficiency at 71.9 %, 
compared to 42.8 % of Hispanics and only 18.6 % of non-Hispanic 
Whites (Xuefeng Liu, Baylin, and Levy 2018). These findings under
score the critical need for maintaining adequate vitamin D levels in the 
general population and highlight the importance of investigating how 
vitamin D deficiency affects the health of at-risk groups.

Black men face both vitamin D deficiency and disproportionately 
high rates of aggressive PCa. They have both a higher incidence and 
worse outcomes of PCa, as highlighted by data from 2017 to 2019 
indicated that the lifetime risk of being diagnosed with PCa was 17.3 % 
for non-Hispanic Black men, compared to 12.6 % for non-Hispanic 
White men in the United States (Surveillance Research Program, NCI 
2023). Furthermore, data from 2018 to 2020 showed that the lifetime 
risk of dying from PCa was 3.3 % for non-Hispanic Black men, while it 
was 2.1 % for non-Hispanic White men (Surveillance Research Program, 
NCI 2023). These marked disparities in the National Cancer Institute’s 
Surveillance Epidemiology and End Results (SEER) data underscore the 
need for ongoing research to unravel the complex array of factors 
contributing to these differences.

One study analyzed over 3000 pathology reports related to PCa and 
found that African American men had higher rates of cancer detection, 
more severe PCa (as indicated by Gleason scores), and were diagnosed at 
a younger age (Bigler, Pound, and Zhou 2011). However, it’s important 
to note that this retrospective study relied on self-identified race/ 
ethnicity rather than genetic ancestry testing. In 2020, a study involving 
a large and diverse cohort of 60,035 men diagnosed with PCa within the 
Veterans Affairs (VA) health care system aimed to examine how 
healthcare inequities contribute to racial disparities in PCa (Riviere 
et al., 2020). In this equal-access medical environment, researchers 
found that African American men did not present with more advanced 
disease stages or poorer outcomes compared to non-Hispanic White men 
(Riviere et al., 2020). Contrary to many national studies highlighting 
racial disparities in PCa, this study revealed that African American men 
were diagnosed at younger ages and had higher PSA levels; surprisingly, 
they were less likely to have high Gleason scores (8− 10), advanced 
clinical T classifications (≥3, indicating tumor extension beyond the 
prostate), or distant metastatic disease (Riviere et al., 2020). In 2022, a 
similar investigation was conducted on an even larger group of 92,269 
men diagnosed with PCa from the VA health care system, focusing on 
distant metastasis as a primary endpoint rather than long-term survival 
(Yamoah et al., 2022). Consistent with the previous study, they found 
that African American men were younger and had higher PSA levels at 
diagnosis. However, they also discovered that these men had double the 
incidence of developing both localized and metastatic PCa (Yamoah 
et al., 2022). Among those who received definitive treatment, African 
American men exhibited a higher residual metastatic burden after 
treatment compared to their non-Hispanic White counterparts, regard
less of risk category (Yamoah et al., 2022). This study reinforced the 
existence of racial disparities in PCa, emphasizing the need to evaluate 
the effects of treatment and access to healthcare.

3.9. Vitamin D and prostate cancer in Black men

Few studies have exclusively focused on Black men, and the only 

randomized, placebo-controlled trial on vitamin D supplementation 
among healthy Black men without a PCa history found no significant 
effect on PSA levels [23]. Given the higher risk of both lethal PCa and 
vitamin D deficiency among Black men, these epidemiological findings 
highlight the need to include Black and other vitamin D-deficient pop
ulations in research to better understand the role of systemic vitamin D 
deficiency in PCa risk and progression, especially in those at increased 
risk.

Recognizing that Black men face higher rates of vitamin D deficiency 
as well as increased PCa incidence and mortality, numerous stud
ies—including prospective, case-control, and clinical trials—have aimed 
to explore links between these disparities, as summarized in Table 4. In 
1993, Corder et al. conducted a pre-diagnostic study using stored blood 
samples from 90 Black and 91 White men diagnosed with PCa, along 
with matched controls, to compare PCa risk in relation to vitamin D 
status between the two groups [26]. Although this small study did not 
find a significant link between vitamin D levels and PCa incidence in 
Black versus White men, it spurred further research on this disparity.

Subsequent larger-scale prospective studies have shown evidence 
supporting vitamin D’s protective effect against PCa in African American 
men [106,79,80]. These studies have demonstrated that low levels of 25 
(OH)D are linked to a higher overall risk of PCa among African American 
men [79] and are also significantly associated with more aggressive 
cancer and advanced tumor characteristics, such as higher Gleason 
scores and tumor stages [106,79,80]. A notable strength of these studies 
is their substantial representation of Black men and the higher preva
lence of vitamin D deficiency (ranging from 40 % to 60 %) among 
participants, which has facilitated a more accurate evaluation of vitamin 
D deficiency’s role in PCa.

4. Discussion

In sum, the epidemiological research on vitamin D’s role in PCa is 
inconsistent, with several factors contributing to these discrepancies. 
This is primarily due to inherent challenges in study design and execu
tion. Many studies do not account for factors such as sun exposure and 
dietary intake (Yeum, Song, and Joo 2016). Another major issue is the 
difficulty in controlling vitamin D intake, as participants often self- 
supplement with vitamin D, especially when they are aware they are 
part of a clinical trial. Furthermore, vitamin D levels can vary widely 
among individuals due to factors such as diet, sunlight exposure, and 
genetics, complicating the interpretation of results. Often, initial 
vitamin D status of the patients are not considered to ensure supple
mentation only in those who are deficient.

PCa itself is biologically complex, with multiple genetic, environ
mental, and hormonal influences, making it difficult to isolate the 
impact of vitamin D. Study designs often suffer from limitations, 
including small sample sizes, short durations, and inadequate control for 
confounding variables like age, lifestyle, and comorbidities. PCa is a 
slow growing tumor, and short term vitamin D interventions do not 
reverse decades, perhaps a lifetime of vitamin D deficiency. The timing 
and dosage of vitamin D supplementation may not always be optimal, 
which could influence the effectiveness of the intervention. Racial and 
genetic differences also play a significant role, as certain populations, 
particularly Black men, are more likely to have lower vitamin D levels 
and may respond differently to supplementation. The lack of diversity in 
study populations, often dominated by individuals of European 
ancestry, further limits the generalizability of findings.

For PCa, it essential to understand the endpoints analyzed in the 
study. Given the high incidence of indolent PCa, studies that evaluate 
overall PCa risk, are unlikely to be clinically informative. Whereas 
studies that assess aggressive and lethal PCa are highly relevant. For 
example, a large collaborative analysis combining data from 19 pro
spective cohort and nested case-control studies, including over 30,000 
cases and controls, reported that higher 25(OH)D levels were linked to 
an increased overall incidence of PCa. However, this association was 
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only observed for non-aggressive PCa, not for aggressive forms [112]. 
The authors propose that this positive link could be due to detection 
bias, as men who are health-conscious may maintain adequate vitamin D 
levels and are more likely to undergo PSA testing and seek medical care 
for early symptoms [112]. This undermines efforts to assess the true 
effect of vitamin D on PCa risk and progression.

Another significant trend is the U-shaped association observed be
tween serum 25(OH)D levels and total PCa risk, indicating that both 
very high and very low vitamin D levels may elevate PCa risk [61,74, 
117]. This U-shaped pattern also extends to advanced, high-grade 

disease [61] and PCa-specific mortality [74]. These findings highlight 
the importance of determining an optimal range for vitamin D levels to 
support prostate health, potentially reducing PCa incidence, disease 
aggressiveness, and PCa-specific mortality, as well as other health 
conditions.

In addition to observational studies, interventional research, 
including pilot studies and clinical trials, has explored vitamin D’s role 
in PCa. Early pilot studies suggested a protective benefit of vitamin D for 
men with histologically confirmed PCa or clinical suspicion of the dis
ease [46,124,37]. Prediagnostic studies, meaning before patients were 

Table 4 
Research studies investigating the role of vitamin D on prostate cancer in African American mena.b. This table consists of research studies selected from SUPPLE
MENTAL TABLE I that specifically demonstrate the relationship between vitamin D and prostate cancer in African American or Black men. Each article was thoroughly 
reviewed, and relevant data were extracted and documented in the table, including population demographics, the percentage of vitamin D deficient participants (if 
reported), the key findings, study type classification, as well as the proposed role of vitamin D in prostate cancer. Each study was classified by study type and sorted into 
subsections: Prospective Cohort and Cohort, Prospective Case-Control, Nested Case-Control, and Case-Control Studies; Pilot Studies and Clinical Trials. Within each 
subsection, studies are organized chronologically by publication year and subsequently alphabetized by the authors’ names.

Author/ 
Year

Population VitD Deficient 
Population

Overall Findings Study Type VitD Role

Prospective Cohort and Cohort Studies

Murphy 
et al., [79]

Men 40–79 in Chicago, Illinois US undergoing 
first prostate biopsy for elevated PSA or 
abnormal DRE (n = 667)

~40 % of cohort 
(<50 nmol/L)

Low 25(OH)D levels associated with higher 
Gleason grade and tumor stage in European 
men. Low 25(OH)D levels associated with 
increased PCa risk and high Gleason grade and 
tumor stage in African American men (measured 
25(OH)D levels only).

Prospective cohort 
study

Protective

Steck et al., 
[106]

Men 40–79 in North Carolina and Louisiana, US 
with initial diagnosis of histologically 
confirmed PCa (n = 1200 cases)

~47 % of cohort 
(<50 nmol/L)

High 25(OH)D levels associated in African 
American men with increased PCa 
aggressiveness with low calcium intake and 
decreased PCa aggressiveness with high calcium 
intake (measured 25(OH)D levels only).

Prospective cohort 
study

Harmful/ 
Protective

Nelson 
et al., [80]

African American (self-described) men 40–85 
in Washington, DC, US diagnosed with incident 
PCa (n = 155 cases)

~60 % of cases 
(<50 nmol/L)

Low 25(OH)D levels associated with increased 
risk of aggressive PCa (measured 25(OH)D 
levels only).

Cohort study Protective

Prospective Case-Control, Nested Case-Control, and Case-Control Studies
Corder 
et al., [26]

Black and White men in California, US 
diagnosed with PCa along with matched 
controls (n = 90 black and n = 91 white cases/ 
n = 90 black and n = 91 white matched 
control pairs)

13.3 % of controls 
(<37.5 nmol/L)

No significant associations between 25(OH)D 
levels and PCa risk. High 1,25(OH)2D levels 
associated with decreased PCa risk, especially in 
older men (>57) or those with low 25(OH)D 
(measured both 25(OH)D and 1,25(OH)2D 
levels).

Prospective case- 
control study

Null/ 
Protective

Kristal 
et al., [61]

Men ≥ 50 (for African American) or ≥ 55 
(other) in US, Canada, and Puerto Rico 
diagnosed with primary PCa for cases or blood 
samples available for cohort (n = 1731 cases +
n = 3203 cohort)

> 25 % of cases 
and ~30 % of 
cohort (<50 
nmol/L)

U-shaped association of 25(OH)D levels and 
total PCa risk, especially in high-grade disease. 
In African American men, high 25(OH)D levels 
associated with decreased risk of high-grade PCa 
only (measured 25(OH)D levels only).

Nested case-cohort 
study

Protective

Jackson 
et al., [53]

Men 40–80 in Jamaica recently diagnosed with 
histologically confirmed PCa along with 
controls (n = 146 cases/n = 191 controls) 
(predominantly black)

~13 % of controls 
(<50 nmol/L)

High 25(OH)D levels associated with increased 
PCa risk (measured 25(OH)D levels only).

Case-control study Harmful

Paller et al., 
[88]

Black men ≥ 40 in Washington, D.C., US 
diagnosed with PCa along with matched 
controls (n = 90 cases/n = 62 matched control 
pairs)

~68 % of controls 
(<75 nmol/L)

No significant associations between 25(OH)D 
levels or dietary intake/supplementation and 
PCa risk (measured 25(OH)D levels and dietary 
intake).

Case-control study Null

([10], 201) Men 40–79 in Chicago, Illinois and 
Washington, D.C., US diagnosed with 
histologically confirmed PCa along with 
controls (n = 699 cases/n = 958 controls)

Not reported. High vitD dietary intake associated with 
decreased risk of aggressive PCa. High vitD 
dietary intake associated with decreased total 
PCa risk in African Americans (measured dietary 
intake only).

Case-control study Protective

Layne et al., 
[62]

Black men 55–74 in US diagnosed with PCa 
along with matched controls (n = 226 cases/ 
n = 452 matched controls 1:2)

~13 % of controls 
(<25 nmol/L)

No significant associations between 25(OH)D 
levels and PCa risk. High 25(OH)D levels 
associated with decreased risk of nonaggressive 
disease (measured 25(OH)D levels only).

Nested case-control 
study

Null/ 
Protective

Pilot Studies and Clinical Trials
Chandler 
et al., [23]

Black men supplemented with 1000, 2000, or 
4000 IU vitD or placebo (n = 105)

Not reported. No significant effect of vitD supplementation 
and PSA levels (measured 25(OH)D levels only).

Prospective, 
randomized, double- 
blind, placebo- 
controlled clinical trial

Null

a Studies ordered in subsections by study type classification: Prospective Cohort and Cohort Studies; Prospective Case-Control, Nested Case-Control, and Case- 
Control Studies; Pilot Studies and Clinical Trials. Within each subsection, studies ordered chronologically by publication date and subsequently alphabetically by 
authors’ last name.

b For consistency, the percentage of study population with vitamin D deficiency is based on controls only with < 30 nmol/L as standard deficiency definition (unless 
otherwise noted). Serum concentrations of 25(OH)D given in ng/mL were converted to nmol/ L, using the conversion factor (1 ng/mL = 2.5 nmol/L).
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diagnosed with PCa, found low serum 1,25(OH)D levels to be predictive 
of PCa risk [26]. Research on estimated dietary vitamin D intake has 
produced mixed results. Some studies found weak inverse associations 
between high dietary vitamin D intake and reduced PCa risk [10,116], 
while others found no significant relationship [45,90]. Similarly, studies 
assessing serum vitamin D levels and PCa incidence show contradictory 
findings. While some report a protective role of vitamin D [74], others 
observe harmful or null associations [123,9]. However, evidence points 
to a protective effect of vitamin D in aggressive or advanced PCa [44, 
49]. When assessing PCa mortality, the role of vitamin D becomes 
clearer. Case-control studies consistently show that high serum 25(OH)D 
levels are associated with a decreased risk of lethal PCa [101,73]. 
Meta-analyses support this protective effect [104,27]. The discrepancies 
in these findings may be explained by variations in geographic location, 
sun exposure, and study design.

While the role of vitamin D in PCa remains an ongoing and debated 
topic, significant challenges persist in designing studies that can yield 
definitive results. Vitamin D is a complex metabolite, and it is impossible 
for any intervention to fully replicate the long-term effects of lifelong 
deficiency. The variability in vitamin D levels across individuals, com
pounded by racial disparities, underscores the need for more population- 
specific studies. While many studies in this review reported null find
ings, there remains strong evidence suggesting that vitamin D may play 
a critical role in PCa, particularly in populations at higher risk, such as 
Black men. This research has the potential to enhance diagnosis, pre
diction, prevention, treatment, and survival outcomes, while also 
shedding light on biological differences in disease progression across 
races. Ultimately, the question remains: Could maintaining sufficient 
vitamin D levels help prevent PCa or reduce its severity, especially in at- 
risk populations? These insights may not only address racial disparities 
but also inform broader strategies for PCa prevention and treatment in 
all populations.
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