FISEVIER

Contents lists available at ScienceDirect

Journal of Steroid Biochemistry and Molecular Biology

journal homepage: www.elsevier.com/locate/jsbmb

The double disparity: Vitamin D deficiency and lethal prostate cancer in black men

Adriana Duraki ^{a,1}, Kirsten D. Krieger ^{a,1}, Larisa Nonn ^{a,b,*}

- a Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
- b University of Illinois Cancer Center, Chicago, IL, USA

ARTICLE INFO

Keywords: Prostate cancer Disparities Vitamin D

ABSTRACT

Epidemiological data from as early as the 1930s documented a dramatic racial disparity in prostate cancer incidence, survival, and mortality rates among Black men—a trend that persists to this day. Black men are disproportionately burdened by prostate cancer, developing the disease at younger ages, facing more aggressive and lethal forms, and ultimately experiencing double the mortality rate of men of European descent. Investigating the multifactorial contributors to this racial disparity has been extensive, but results have often been inconsistent or inconclusive, making it difficult to pinpoint clear correlations. However, there is strong evidence suggesting that vitamin D deficiency is significantly associated with lethal forms of prostate cancer. This is particularly important given that Black men are at a higher risk for both vitamin D deficiency and developing aggressive, lethal prostate cancer, presenting a double disparity. The disparity in prostate cancer and vitamin D extends to Black men outside the US, but most of the studies have been done in African American men. Understanding the available evidence on vitamin D deficiency and its influence on prostate cancer biology may reveal new opportunities for prevention and therapeutic intervention.

1. Introduction

With 1.5 million new cases globally in 2022, prostate cancer (PCa) stands as the second most common cancer and the fifth leading cause of cancer mortality among men [102]. Although prevalence is high, PCa cases typically have some of the best prognoses with 5-year survival ranging from 70 % to 100 % [70]. PCa mortality rates in Black men are approximately two to four times higher than those in every other racial and ethnic group [102]. Among all cancer types, PCa presents the most significant racial health disparity, with African American men facing an increased risk of lethal PCa compared to individuals of other racial backgrounds in the US [65]. One factor that may partially explain this disparity is vitamin D deficiency, as the higher levels of melanin in the skin of Black men reduce their ability to synthesize vitamin D from sunlight exposure. Vitamin D is a steroid hormone precursor known for its essential roles in maintaining bone health, supporting immune function, regulating cell differentiation and proliferation, and exhibiting anti-inflammatory and anticancer properties.

In this review, we provide a comprehensive and up-to-date summary of dietary intake, case-control, and epidemiological studies investigating

the role of vitamin D in PCa. This synthesis provides an overview of the current understanding of vitamin D's influence on PCa risk, progression, aggressiveness, and mortality, including a dedicated section focusing on research involving Black men to address the double disparity in PCa outcomes. Finally, we explore why nearly half of the compiled studies report null findings, discussing inherent study design limitations that complicate the control of vitamin D intake and status, potentially obscuring true associations and underestimating its impact.

1.1. The biological importance of vitamin D

Vitamin D, often called the "sunshine vitamin," is a steroid hormone rather than a true vitamin, as it can be synthesized in the skin upon exposure to sunlight [69]. It's primarily recognized for maintaining calcium homeostasis and bone health, but its role extends to regulating cell fate, proliferation, and differentiation [34]. The cutaneous precursor, vitamin D3, undergoes UV exposure-induced hydroxylation to form 25-hydroxyvitamin D (25(OH)D), the primary circulating metabolite and the clinical standard for assessing vitamin D status. Additional hydroxylation produces the active ligand, 1,25-dihydroxyvitamin D (1,25

^{*} Corresponding author at: Department of Pathology, University of Illinois Chicago, Chicago, IL, USA. *E-mail address:* lnonn@uic.edu (L. Nonn).

 $^{^{1}}$ Co-first authors.

(OH)2D), which binds to the vitamin D receptor (VDR) to regulate the transcription of hundreds of genes. Vitamin D can also directly affect the epigenome and regulate over 1000 genes, either through VDR binding or indirect pathways (Carlberg 2019).

Vitamin D deficiency affects individuals across all age groups, with prevalence varying based on factors such as geographical location, season, and population demographics (Holick 2006a). Certain groups are at a higher risk, including those with limited sun exposure, low dietary intake, and individuals with darker skin tones, as melanin reduces the skin's ability to synthesize vitamin D (Holick 2006a; Institute of Medicine (US) 2011). To maintain healthy serum levels, individuals in these at-risk groups must ensure adequate vitamin D intake through diet or supplements. Vitamin D status is determined by serum concentrations of 25(OH)D, which reflect both endogenous production and dietary intake (EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) 2016). Although the ideal serum 25(OH)D levels and specific thresholds for deficiency, insufficiency, and sufficiency remain subjects of debate, a general consensus holds that serum levels of 50 nmol/L (20 ng/mL) or higher are adequate for bone and overall health in individuals without risk factors for deficiency.

1.2. The role of vitamin D in prostate health and cancer risk

Accumulated evidence from cellular, molecular and developmental studies suggests that vitamin D plays a significant role in maintaining prostate health, with emerging research exploring whether insufficient levels of vitamin D could influence PCa development. Like other organs, prostate cells express VDR and is responsive to 1,25(OH)2D (Miller et al., 1992; Skowronski et al., 1993; Peehl et al., 1994; Barreto et al., 2000). In normal human prostate tissue, VDR is expressed in both the epithelial and stromal cell types [57,58]. VDR levels vary with both age and prostate zone, with the highest expression observed in middle-aged men (ages 20-50), while younger and older individuals show a decline in expression [58], suggesting that vitamin D plays a critical role in maintaining prostate homeostasis throughout adulthood. This emphasizes the importance of the vitamin D axis in prostate biology and supporting the hypothesis that vitamin D deficiency—modulated by factors such as age and race-may increase the risk of developing PCa (Schwartz & Hulka 1990).

Beyond its essential roles in bone health, vitamin D has profound effects on cellular functions that are critical in PCa biology. Vitamin D regulates cell proliferation by modulating cell cycle and promoting apoptosis [119,34]. It also has a crucial role in immune regulation, impacting both innate and adaptive immunity, which likely contribute

to benefits in cancer prevention activities [119,34]. In PCa cells, vitamin D has a prodifferentiating effect, that supports a less malignant and more normal phenotype [34], inducing differentiation markers such as PSA, cytokeratins, and E-cadherin (Gocek and Studzinski 2009a), further underscoring its influence on cellular behavior. The regulation of various physiological processes, including cell proliferation, immune modulation, and differentiation, highlights the non-calcemic functions of vitamin D [108,119] are summarized in Fig. 1.

1.3. Implications of vitamin D in prostate cancer

In the 1990s an hypothesis emerged, linking vitamin D deficiency to increased PCa risk, thus factors such as age, race, and residence in regions associated with reduced sunlight exposure—could contribute to vitamin D deficiency and, consequently, PCa risk (Schwartz & Hulka 1990). This hypothesis gained support from observations that men in the United States experienced higher rates of PCa mortality based on their geographic location, particularly their distance from the equator (Hanchette and Schwartz 1992). Furthermore, men diagnosed with PCa during the summer or fall, when circulating vitamin D levels are higher, tended to have better prognoses (Robsahm et al., 2004). Following the initial study that connected reduced sunlight exposure to increased PCa mortality (Hanchette and Schwartz 1992), there has been three decades, of epidemiological research on this topic has encompassed a wide array of studies, including prospective cohort studies, case-control studies, clinical trials, Mendelian randomization studies, and meta-analyses. We performed a comprehensive literature review of these studies and they are summarized in Supplemental TABLE I and discussed in this review.

2. Method

A literature search was performed to identify various studies and clinical trials examining the relationship between vitamin D and prostate cancer. We focused on studies that reported serum levels of vitamin D or dietary intake in relation to prostate cancer incidence, mortality, or advancement. The NCBI PubMed database was used to retrieve relevant articles through a search strategy incorporating the following combination of terms: (vitamin D or 25(OH)D or 1,25(OH)2D) AND (prostate cancer or prostate) AND (prospective cohort or cohort or case-control or meta-analyses or pilot studies or clinical trials). Only articles written in or translated to English were included. Duplicate articles were ignored. Each article was reviewed if title and abstract appeared relevant. Reviewing included confirmation that the study reported an association between vitamin D and prostate cancer. Comprehensive cross-

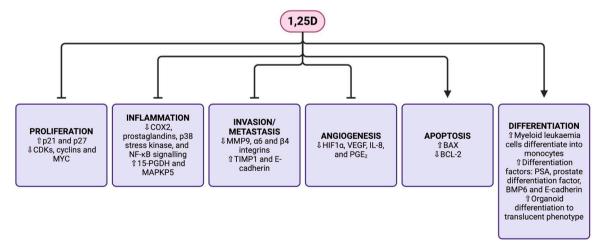


Fig. 1. Vitamin D regulates cancer processes in prostate and inflammatory cells. The active form of vitamin D, 1,25(OH)2D, acts on cancer cells via various mechanisms including inhibiting proliferation, inflammation, invasion/metastasis, and angiogenesis as well as enhancing apoptosis and differentiation. Adapted from [34,71].

referencing was utilized in addition to the database search strategy to identify additional studies that were not captured in the initial search. For eligible studies, the following data was extracted: author(s); publication year; characteristics of study population including age, race, location, health, cohort/case number; percentage of vitamin D deficient population (if reported); overall findings/conclusions of the relationship between vitamin D and prostate cancer; study type/design; and overall role of vitamin D in relation to prostate cancer.

3. Results

3.1. Human studies on vitamin D and prostate cancer

Many epidemiological studies have explored the relationship between vitamin D status and PCa. Geographic and seasonal variations in sunlight exposure, which affect cutaneous vitamin D synthesis, provided early links to PCa mortality (Hanchette & Schwartz 1992). Since that seminal finding, there have been observational studies that examine associations between PCa risk and/or mortality by vitamin D dietary intake or blood levels of vitamin D metabolites, which are summarized in Table 1.

3.2. Dietary intake studies

To evaluate the relationship between vitamin D dietary intake and PCa risk, Tseng et al. found a weak inverse association, indicating that higher dietary vitamin D intake was weakly linked to a reduced risk of PCa [116]. However, most other diet-focused cohort studies reported no significant associations [15,22,45,50,59,90]. Case-control studies showed a similar pattern, with Deneo-Pellegrini et al. noting a weak association between high dietary vitamin D intake and decreased PCa risk [28], while several other case-control studies found no such link [120,56,21,60,109,51,88]. More recently, Batai et al. identified a protective effect of high dietary vitamin D in reducing the risk of aggressive PCa [10]. In addition to cohort and case-control studies, two meta-analyses [42,52] and one Mendelian randomization study [25] also reported null associations. The lack of agreement among these diet-focused studies may stem from differences in study design, low vitamin D in most diets, and population characteristics such as location, race, and age, which will be discussed in greater detail later.

3.3. Serum vitamin D and prostate cancer incidence and risk

Numerous investigations examine the influence of circulating serum vitamin D metabolite levels on PCa incidence and risk. The findings from prospective cohort studies of men are mixed, with some reporting a protective effect of 25(OH)D serum levels on overall PCa risk [24,74,91], and others indicating a U-shaped curve [123] or no significant association at all [103,107,86,9]. Given the high prevalence of PCa, it is unlikely that vitamin D levels alone are modifiers of incidence.

More than 35 case-control studies have investigated the relationship between serum vitamin D levels and PCa. While most of these studies show no association between vitamin D status and PCa risk [2,8,18,26,33,39,43,48,54,62,66,82,88,89,93,94,95,101,111,114,126], characteristics such as location, race, and age, which will be a few studies have reported inverse associations indicating protective effects of vitamin D on PCa risk [3,5,6,30,75,117,118] or positive associations suggesting harmful effects of vitamin D status [122,16,4,53,72]. Meta-analyses investigating the relationship between PCa risk and vitamin D tend to align with the null associations [127,38,42] or indicate harmful associations [125,40]. These discrepancies may arise from variations in how vitamin D levels are standardized across studies based on factors like the season of blood collection, geographic location, age, and other variables, along with the exclusion of dietary vitamin D intake and sun exposure data.

3.4. Epidemiological studies on vitamin D and prostate cancer aggressiveness and mortality

Although modulation of overall PCa risk by vitamin D is unclear, a protective effect is more consistently observed when examining the risk of metastatic or aggressive PCa [32,44,49,79,80,83]. The majority of case-control studies focusing on the risk of aggressive or advanced PCa lean toward supporting a protective role [2,3,43,63,75,95,128], rather than a harmful one [4,94].

When examining the relationship between vitamin D status and PCa mortality, findings from prospective cohort studies are inconsistent. Some studies indicate that sufficient vitamin D levels are associated with lower PCa mortality [113,17,29,32,74], while others report no significant associations [36,47,49,100]. Notably, case-control studies focusing on PCa mortality consistently show that higher serum 25(OH)D levels are linked to a reduced risk of lethal PCa [101,128,73]. Meta-analyses also support the protective effect of adequate vitamin D levels in reducing PCa mortality [104,27].

3.5. Case-control studies

Case-control studies have found evidence supporting a protective effect of vitamin D against PCa, with some studies showing a beneficial link [10,61,62] and others reporting no significant association [62,88]. Jackson et al. reported a potential harmful effect of 25(OH)D serum levels for Black Jamaican men with PCa. However, Jamaica is a low-latitude region where the population generally has sufficient vitamin D due to high solar UVB exposure, resulting in fewer vitamin D-deficient participants [53]. In several studies focusing on African American men, higher levels of 25(OH)D were linked to a reduced risk of high-grade PCa [61] and a lower risk of non-aggressive PCa [62]. Additionally, research shows that African American men with greater dietary vitamin D intake had a lower overall risk of PCa [10].

3.6. Mendelian randomization studies

Mendelian randomization (MR) studies are a powerful tool used to infer causal relationships between an exposure (e.g., vitamin D levels) and an outcome (e.g., PCa risk). By leveraging genetic variants as proxies for an exposure, MR studies help minimize confounding factors and reverse causation, common limitations of observational studies. In the context of vitamin D and PCa, results largely suggest that there is no causal relationship between genetically predicted vitamin D levels and PCa risk, including aggressive subtypes, as summarized in Table 2.

A large MR study with over 22,000 PCa cases from multiple cancer consortia found no significant association between genetically determined (25(OH)D) concentrations and PCa risk [55]. While the possibility of modest or clinically insignificant effects could not be entirely excluded, this study concluded that screening for and supplementing vitamin D at the population level is unlikely to reduce prostate cancer incidence [31]. Similarly, a UK Biobank study with over 46,000 cancer cases, including PCa, also reported no association between genetically predicted vitamin D levels and PCa risk or mortality [85]. Another study utilizing a larger set of vitamin D-associated genetic variants (74 SNPs) reinforced null findings, suggesting that lower vitamin D concentrations are unlikely to be a causal risk factor for PCa [84]. Additionally, the largest genome-wide association datasets to date found no evidence of a causal relationship between circulating 25(OH)D and PCa risk, even with increased statistical power [25]. Although these MR studies do not support a causal role for vitamin D in PCa risk, the potential for modest or non-linear effects in specific subpopulations with profound vitamin D deficiency cannot be ruled out. Future research should focus on these high-risk groups and further investigate the biological mechanisms involved.

oservational Studies					
itD Role	Author/Year	Population	VitD Deficient Population (%)	Overall Findings	Study Type
rotective	Tseng et al.,	(n = 3612) (88 %	Not reported ^{35,36,40,43,47,49,57,59,60,61}	PCa	Prospective cohort
	[116] ³⁵	white race) 35 ,	8 % of controls ⁵³	risk ^{35,40,42,47,48,49,51,52,53,54,55,56,57,59}	study ^{35,36,37,38,39,40,42,43}
	(Edward	(n = 1095 cohort)	~11.5 % of cases ⁴⁵	Advanced/aggressive/lethal PCa	Cohort study ^{41,44,46}
	[44]) ³⁶	used for model;	~23 % of controls ⁴⁸	risk ^{36,45,46,48,50,51,53,54,57,58}	Nested cohort
	Tretli et al.,	n = 47800 model	16 % of cohort (<26 nmol/L) ⁴⁴	mPCa risk ³⁹	study ^{45,48,49,50,51,52,53,54}
	[113] ³⁷	cohort)36,	12.7 % of controls (<37.5 nmol/L) ⁵¹	PCa mortality risk ^{37,38,43,60,61}	Case-control
	[74] ³⁸	$(n = 1194)^{38}$,	~50 % of controls (<40 nmol/L) ⁵²	PCa incidence ³⁸	study ^{47,55,57,59}
	Fang et al.,	$(n = 262)^{40}$	\sim 25 % of cohort (<44 nmol/L) ³⁹	PCa survival ^{41,44}	Meta-analysis ^{60,61}
	[32] ³⁹	Potential PCa	10 % of cohort (<46 nmol/L) ³⁸	Tumor stage ⁴²	
	Pazdiora et al.,	$(n = 667)^{42}$	~25 % of controls (<46.2 nmol/L) ⁵⁸	Gleason Grade ⁴²	
	[91] ⁴⁰	White cigarette	18.1 % of cohort (<50 nmol/L) ³⁷		
	Der et al.,	smokers with PCa	19 % of controls (<50 nmol/L) ⁵⁰		
	[29] ⁴¹	(n = 1000	> 25 % of cases and ~ 30 % of cohort ($< 50 \text{ nmol/L}$) ⁵⁴		
	Murphy et al.,	cases)44	~34 % of initial cohort (<50 nmol/L) ⁴¹		
	[79] ⁴²	PCa (n = 160	~40 % of cohort (<50 nmol/L) ⁴²		
	Brändstedt	cases)37,	54.5 % of controls (<50 nmol/L) ⁵⁶		
	et al. [17] ⁴³	(n = 1822)	~60 % of cases (<50 nmol/L) ⁴⁶		
	Mondul et al.,	cases)39	83 % of controls (<50 nmol/L) ⁵⁵		
	[77] ⁴⁴	n = 16535			
	Nyame et al.,	cases) ⁴¹ ,			
	[83] ⁴⁵	$(n = 943)^{43}$			
	Nelson et al.,	$(n = 190 \text{ cases})^{45}$,			
	[80] ⁴⁶	$(n = 155 \text{ cases})^{46},$			
	Deneo-Pellegrini	(n = 175 cases/			
	et al., [28] ⁴⁷	n = 233 matched			
	Ahonen et al.,	control) ⁴⁷ ,			
	[3] ⁴⁸	(n = 149 cases/			
	Tuohimaa et al.,	n = 566 matched			
	$[117]^{49}$	controls) ⁴⁸ ,			
	Li et al.,	(n = 622 cases/			
	[63] ⁵⁰	n = 1451			
	Mikhak et al.,	matched controls			
	[75] ⁵¹	1:4) ⁴⁹ ,			
	Tuohimaa et al.,	(n = 492 cases/			
	[118] ⁵²	n = 664 matched			
	Gilbert et al.,	control)50,			
	[43] ⁵³	(n = 684 cases/			
	Kristal et al.,	n = 692 matched			
	[61] ⁵⁴	control) (>90 %			
	Atoum et al.,	white) ⁵¹ ,			
	[6] ⁵⁵ Deschasaux et al.,	(n = 132 cases/			
		n = 456 matched			
	[30] ⁵⁶	controls) ⁵² ,			
	([10], 201) ⁵⁷ Yuan et al.,	(n = 1447 cases/			
		n = 1449			
	[128] ⁵⁸ Amiri et al.,	matched control)			
	[5] ⁵⁹	(98.9 % self-			
	Song et al.,	identified			
	[104] ⁶⁰	white) ⁵³ ,			
	$([27], 20)^{61}$	(n = 1731 cases + n = 3203)			
	([4/], 40)	n = 3203 cohort) ⁵⁴ ,			
		(n = 124 cases)			
		n = 124 cases/ n = 100 matched			
		control) ⁵⁵ ,			
		(n = 129 cases/ n = 167 matched			
		control) ⁵⁶ ,			
		(n = 699 cases/			
		n = 958			
		controls) ⁵⁷ ,			
		(n = 111 cases/)			
		n = 111 cases/ n = 150 matched			
		control) ⁵⁹			
		Advanced PCa			
		(n = 156 cases/			
		n = 156 cases/ n = 156 matched			
		control) ⁵⁸			
		Prospective			
		cohort studies			
		$(n = 7 \text{ studies})^{60}$			
		Retrospective or			

Table 1 (continued)

	Studies				
VitD Role	Author/Year	Population	VitD Deficient Population (%)	Overall Findings	Study Type
		cohort studies			
		(n = 10 studies;			
		n = 10394 cases) ⁶¹			
Null	(E. [45]) ¹	healthy	Not	PCa risk ^{1,2,3,5,}	Prospective cohort
· · · · · ·	(J. M. [22]) ²	$(n = 47781)^1$,	reported ^{1,2,3,14,16,5,6,7,9,12,20,21,22,23,24,25,29,30,31,32,33,34}	6,7,9,10,11,12,13,16,17,19,20,	study ^{1,2,3,6,7,15,16,17,18,19}
	Berndt et al.,	(n = 454) (>85 %	~15 % of controls ¹⁷	21,22,23,24,25,26,27,28,29,30,31,32,33,34	30
	$[15]^3$	white) ³ ,	\sim 25 % of controls (<37 nmol/L) ¹¹	Lethal PCa ¹⁸	Cohort study ^{5,8}
	Baron et al.,	(n = 1294)	~35 % of cohort (<50 nmol/L) ¹⁵	Progression ¹⁴	Case-control
	[9] ⁴	cases) ⁵ ,	25.6 % of cohort (<50 nmol/L) ⁸	PCa mortality ¹⁵	study ^{20,21,22,9,24,25,12,27} ,
	Holt et al.,	$(n = 9559)^6$,	~15 % of controls (<50 nmol/L) ¹⁰	PCa survival ⁸	29,13
	[50] ⁵ Kristal et al.,	$(n = 5866 \text{ men})^7,$ $(n = 7493)^{15},$	> 25 % of controls (<50 nmol/L) ¹⁸		Nested case-control study ^{23, 10,11,26,28}
	[59] ⁶	$(n = 7493)^{-1}$, $(n = 4124)^{17}$,	~50 % of cohort (<50 nmol/L) ¹⁹ ~38 % of controls (<50 nmol/L) ²⁶		Retrospective ²⁹
	Skaaby et al.,	$(n = 4124)^4$, $(n = 672)^4$	31 % of controls (<50 nmol/L) ²⁷		Meta-analysis ^{31,32,33,14,3}
	[103] ⁷	Male cigarette	25 % of controls (<50 nmol/L) ²⁸		
	Gupta et al.,	smokers	~68 % of controls (<75 nmol/L) ¹³		
	[47] ⁸	$(n = 27062)^2$			
	(J. M. [21]) ⁹ Jacobs et al.,	White male			
		cigarette smokers			
	[54] ¹⁰ Faupel-Badger	with PCa and matched controls			
	et al., [33] ¹¹	(n = 296 cases/			
	Holt et al.,	n = 297 matched			
	[51] ¹²	control)11			
	Paller et al.,	$PCa (n = 4404)^{16}$			
	[88] ¹³	stage IV PCa			
	Shahvazi et al.,	$(n = 125 \text{ cases})^8$			
	[98] ¹⁴ Freedman et al.,	PCa and matched			
	[36] ¹⁵	controls (n = 526 cases/n = 536			
	Park et al.,	matched control			
	[90] ¹⁶	pairs) 9 , (n = 83			
	Ordóñez-Mena	cases/n = 166			
	et al., [86] ¹⁷	matched controls			
	Shui et al.,	$1:2)^{10}$, $(n = 827)$			
	[100] ¹⁸ Stephan et al.,	cases/n = 787			
	[107] ¹⁹	matched control pairs) ¹² , $(n = 90)$			
	Braun et al.,	pairs), (ii = 90 cases/n = 62			
	[18] ²⁰	matched control			
	Key et al.,	pairs) 13 , (n = 61			
	[56] ²¹	cases/n = 122			
	Vlajinac et al.,	controls)20,			
	[120] ²² Ma et al.,	(n = 328 cases/			
	[66] ²³	$n = 328$ $controls)^{21},$			
	Kristal et al.,	(n = 101 cases)			
	[60] ²⁴	n = 202			
	Tavani et al.,	controls)22,			
	$[109]^{25}$	(n = 231 cases/			
	Travis et al.,	n = 410			
	[111] ²⁶ Trump et al.,	controls) ²³ ,			
	[114] ²⁷	(n = 605 cases/ n = 592			
	Barnett et al.,	n = 392 controls) ²⁴ ,			
	[8] ²⁸	(n = 1294 cases)			
	Yaturu et al.,	n = 1451			
	$[126]^{29}$	controls)25,			
	Heath et al.,	(n = 652 cases/			
	[48] ³⁰ Huncharek et al.,	$n = 752$ $control)^{26},$			
	[52] ³¹	control) ²⁵ , $(n = 170 \text{ cases}/$			
	Yin et al.,	n = 170 cases/ n = 100			
	[127] ³²	$(controls)^{27}$			
	Gandini et al.,	(n = 297 cases +			
	[38] ³³	n = 1433 cohort			
	Gilbert et al.,	(>90 % white			
	$[42]^{34}$	race) ²⁸			
		n = 479 cases/			
		$n = 479$ $control)^{29}$			
		, $(n = 833 \text{ cases})$			

Table 1 (continued)

itD Role	Author/Year	Population	VitD Deficient Population (%)	Overall Findings	Study Type
IID ROIE	Audioi/ I Edf	•	VID Deficient ropulation (70)	Overan Findings	otuuy 1ype
		controls) ³⁰ Lethal PCa and controls (n = 518 cases/n = 2986 controls) ¹⁸ Single arm studies and randomized controlled trials (n = 22 studies) ¹⁴ Initial and repeat biopsies (n = 480) ¹⁹ Observational studies (n = 6 studies) ³¹ Prospective cohort studies and nested case-control studies (n = 11 studies) ³² , (n = 11 studies;			
		n = 3956			
Iarmful	Wong et al.,	cases) ³³ , (n = 25 studies) ³⁴ (n = 4208)	Not reported ^{64,68,69} < 5 % of controls ⁶⁵	PCa risk ^{62,63,64,65,66,67,68,69}	Prospective cohort study
	[123] ⁶² , Albanes et al., [4] ⁶³ , Brändstedt et al.,	(>95 % Caucasian) ⁶² Cigarette smokers with PCa	< 5 % of controls** -33 % of controls (<25 nmol/L) ^{63,66} -20 % of cohort (<50 nmol/L) ⁶² -13 % of controls (<50 nmol/L) ⁶⁷	Aggressive PCa risk ⁶³	Nested case-control study ^{63,64,65,66} Case-control study ⁶⁷ Meta-analysis ^{68,69}
	[16] ⁶⁴ , Meyer et al., [72] ⁶⁵ , [122] ⁶⁶ ,	(n = 1000 cases/ n = 1000 matched control) ⁶³ ,	13 % of controls (<30 inito/ E)		weta-analysis
	Jackson et al., [53] ⁶⁷ , Xu et al.,	(n = 950 cases/ n = 964 matched $control)^{66}$			
	[125] ⁶⁸ , [40] ⁶⁹	PCa with matched controls (n = 943 case/n = 838 matched control) ⁶⁴ , (n = 2106 cases/ n = 2106 matched control pairs) ⁶⁵ , (n = 146 cases/n = 191 controls) (predominantly black) ⁶⁷ Prospective cohort studies and nested case-			
		control studies (n = 21 studies; n = 11941 $(n = 19 \text{ cases})^{68}$, $(n = 19 \text{ studies};$ $(n = 12786 \text{ studies})^{68}$			
Jull/ trotective	Holt et al., [49] ⁷⁰ , Cheney et al., [24] ⁷¹ , Corder et al., [26] ⁷² , Gann et al., [39] ⁷³ , Nomura et al., [82] ⁷⁴ , Shui et al., [101] ⁷⁵ , Schenk et al.,	cases) ⁶⁹ PCa (n = 1476 cases) (~90 % white race) ⁷⁰ , (n = 90 black and n = 91 white cases/n = 90 black and n = 91 white matched control) ⁷² , (n = 232 cases/ n = 414 matched controls) ⁷³ , (n = 136 cases/	Not reported ^{74,75,76} 8.4 % of cohort ⁷⁰ ~13 % of controls (<25 nmol/L) ⁷⁷ 81.1 % of controls (<50 nmol/L) ⁷⁸ 6.5 % of controls (<37.5 nmol/L) ⁷³ 13.3 % of controls (<37.5 nmol/L) ⁷² ~75 % of cohort (<50 nmol/L) ⁷¹	PCa risk ^{71,72,73,74,75,76,77,78} Progression/recurrence/mortality ⁷⁰ Aggressive PCa risk ⁷⁰ Lethal PCa ⁷⁵ Gleason Score ⁷⁶	Prospective cohort study ^{70,71,72} Nested case-control study ^{73,74,75,76,77,78}

Table 1 (continued)

Observationa	al Studies				
VitD Role	Author/Year	Population	VitD Deficient Population (%)	Overall Findings	Study Type
	Layne et al., [62] ⁷⁷ , Acikgoz et al., [1] ⁷⁸	controls) ⁷⁴ , (n = 1260 cases/ n = 1331 matched control pairs) (>95 %			
		white) ⁷⁵ , (n = 1695 cases/ n = 1682 matched control) ⁷⁶ , (n = 226 cases/ n = 452 matched controls) ⁷⁷ , (n = 52 cases/ n = 211 matched controls) ⁷⁸			
Protective/	Meyer et al.,	$(n = 2003)^{71}$ PCa $(n = 2259)$	Not reported ⁸⁰	PCa risk ^{79,80,82}	Prospective case-control
Protective/ Harmful	[73] ⁷⁹ Miles et al., [76] ⁸⁰ Steck et al.,	cases/n = 2120 matched control) ⁷⁹ ,	4 % of controls ⁷⁹ ~7 % of controls ⁸² ~47 % of cohort (<50 nmol/L) ⁸¹	PCa aggressiveness ^{81,82} Mortality ⁷⁹	study ⁷⁹ Prospective cohort stud Nested case-control
	[106] ⁸¹ Travis et al., [112] ⁸²	(n = 1695 cases/ n = 1682 matched control) ⁸⁰ , (n = 1200			study ⁸⁰ Collaborative analysis ⁸
		cases) ⁸¹ Prospective cohort studies and nested case- control studies (n = 19 studies; n = 13462 cases/ n = 20261 controls) ⁸²			
Vull/ Harmful	Platz et al., [93] 83 Ahn et al., [2] 84 Park et al., [89] 85 Sawada et al., [94] 86	PCa (n = 460 cases/n = 460 matched control) (>90 % white) ⁸³ , (n = 749 cases/ n = 781 matched control) ⁸⁴ , (n = 201 cases/ n = 402 matched controls) ⁸⁶ invasive PCa	Not reported ⁸⁶ 11.3 % of controls (<37.5 nmol/L) ⁸³ ~20 % of controls (<42.5 nmol/L) ⁸⁴ ~16 % of controls (<50 nmol/L) ⁸⁵	PCa risk ^{83,84,85,86} Aggressive PCa risk ⁸⁴ Advanced PCa ⁸⁶	Nested case-control study ^{83,84,85,86}
		(n = 329 cases/ n = 656 matched $\text{controls})^{85}$			

^a Studies ordered in subsections by study result: Null, Protective, Harmful, Mixed.

Table 2Mendelian randomization studies investigating the role of vitamin D on prostate cancer^{a,b}.

Mendelian Ra	Mendelian Randomization Studies							
VitD Role	Author/Year	Population	VitD Deficient Population (%)	Endpoint	Study Type			
Null	Ong et al., [85] ¹ Jiang et al., [55] ² Cheng et al., [25] ³ Ong et al., [84] ⁴	UKB ^{1,3} and PRACTICAL ¹ ($n=86726 \text{ cases/} n=194384 \text{ controls}$) PRACTICAL ^{2,4} consortium ($n=79148 \text{ cases/} n=61106 \text{ controls}$)	Not reported	PCa risk	Mendelian randomization study			
Null/ Protective	Dimitrakopoulou et al., [31]	GAME=ON, GECCO, and PRACTICAL consortiums; $(n = 22898 \text{ cases/n} = 23054 \text{ controls})$	Not reported	Total or aggressive PCa risk	Mendelian randomization study			

^a Studies ordered in subsections by study result: Null, Mixed.

^b For consistency, the percentage of study population with vitamin D deficiency is based on controls only with < 30 nmol/L as standard deficiency definition (unless otherwise noted). Serum concentrations of 25(OH)D given in ng/mL were converted to nmol/L, using the conversion factor (1 ng/mL = 2.5 nmol/L).

^b For consistency, the percentage of study population with vitamin D deficiency is based on controls only with < 30 nmol/L as standard deficiency definition (unless otherwise noted). Serum concentrations of 25(OH)D given in ng/mL were converted to nmol/L, using the conversion factor (1 ng/mL = 2.5 nmol/L).

3.7. Pilot/clinical trials

Pilot studies and clinical trials provide a unique opportunity to evaluate the potential effects of vitamin D intervention on PCa risk, progression, survival, and prostate specific antigen (PSA) levels. Randomized, placebo-controlled trials of vitamin D supplementation on PCa and overall survival in PCa patients have shown mixed results, as summarized in Table 3. Circulating levels of PSA is commonly used as a biomarker to monitor prostate cancer progression and recurrence. Some studies indicate a protective effect, with improved survival and reduced PSA levels as outcomes [121,14], while others report no significant findings [41,67,7]. Although, Scher et al. [96] found that high-dose calcitriol (1,25(OH)2D) supplementation was linked to reduced survival in PCa patients, this was a treatment study that used calcitriol, the active form of vitamin D, which is not reflective of the normal circulating form that has been linked to reduced PCa risk.

Meta-analyses of these trials, excluding Manson et al. [67], suggest no substantial difference in PSA response or survival rates between vitamin D-supplemented patients and placebo groups [98]. Most of these randomized studies did not report patients' serum vitamin D

levels, and the PCa treatments varied, leaving room for the possibility that vitamin D may still offer protective benefits.

Shahvazi et al. evaluated 16 single-arm clinical trials without placebo controls to examine vitamin D's impact on PSA levels or response rates. The results were nearly split: half suggested a protective association, with vitamin D supplementation linked to reduced PSA levels or a weak positive impact [11,20,35,81,92,110,115], while the other half showed no significant effect of vitamin D on reducing PSA levels [12,13, 19,64,78,87,97,105]. Despite the diversity in study populations, PCa stages, and prior therapies, the Shahvazi et al. meta-analysis demonstrated a statistically significant improvement of 19 % in PCa outcomes with vitamin D supplementation, regardless of chemotherapy use. Though the trials showed considerable variability in design, vitamin D forms, doses, and treatment protocols, the overall evidence points to a meaningful protective role of vitamin D in slowing disease progression in men with PCa.

3.8. Racial disparities in both vitamin D status and prostate cancer risk

Interpreting the impact of vitamin D supplementation on PCa in

Table 3Pilot and clinical studies investigating the role of vitamin D on prostate cancer^{a,b}

Pilot Studies	ilot Studies and Clinical Trials							
VitD Role	Author/Year	Population	VitD Deficient Population (%)	Endpoint	Study Type			
Protective	Gross et al., [46] 13 Beer et al., [11] 14 Tiffany et al., [110] 15 Woo et al., [124] 16 Flaig et al., [35] 17	Suspicion for PCa (n = 53) ²⁵ PCa (n = 7 cases) ¹³ , (n = 15) ¹⁶ , (n = 44 cases) ²² , (n = 63) (>80 % white race) ²⁴ mPCa (n = 26 cases) ²¹ mCRPC (n = 37 cases) ¹⁴ , (n = 26 cases) ¹⁹ , (n = 19 cases) ²⁰ CRPC (n = 24 cases) ¹⁵ , (n = 34 cases) ¹⁷ ,	Not reported ^{13,14,15,16,18,19,20,21,23} 25 % of cases (<20 nmol/L) ²² ~9 % of cohort (<37.5 nmol/ L) ¹⁷ ~20 % of cases (<50 nmol/L) ²⁴	PSA ^{13,15,16,17,18,19,20,21,23,24} PCa risk ²⁵ Progression ^{14,15,17,18,22} Survival ¹⁴	Clinical trial ²¹ Phase I/II clinical trial ¹⁵ Phase II ^{14,16,18,19,20,22,24} Pilot study ²⁵ Non-randomized pilot trial Prospective ^{16,22} Randomized ²⁴			
	Trump et al., [115] 18 Petrioli et al., [92] 19 (J. S. [20]) 20 Newsom-Davis et al.,	$(n = 43 \text{ cases})^{18}, (n = 23 \text{ cases})^{23}$			Double-blind ²⁴ Open label ^{13,22}			
	[81] ²¹ Marshall et al., [68] ²² Shamseddine et al., [99] ²³							
Null	Wagner et al., [121] ²⁴ Galunska et al., [37] ²⁵ Osborn et al., [87] ¹ Beer et al., [13] ² Liu et al., [64] ³ Beer et al., [12] ⁴ Morris et al., [78] ⁵ Schwartz et al.,	PCa $(n = 14 \text{ cases})^1$, $(n = 22 \text{ cases})^2$ CRPC $(n = 20 \text{ cases})^3$, $(n = 18 \text{ cases})^6$, (n = 70 cases) (>90 % white race) ⁷ , $(n = 18 \text{ cases})^9$ mPCa $(n = 17 \text{ cases})^4$ progressive PCa $(n = 31 \text{ cases})^5$ recurrent PCa $(n = 21 \text{ cases})^8$	Not reported ^{1,2,3,4,7,8,9,10,11} 12 % of cohort ⁶ ~12 % of cohort (<50 nmol/L) ¹²	PSA ^{1,2,4,6,7,8,9,11} PCa progression ^{3,5,10} Survival ⁷ PCa risk ¹²	Phase I clinical trial ^{2,4,5,6} Phase II clinical trial ^{1,3,6,7,8,5} Randomized ^{7,10,11,12} Double-blind ^{7,11,12} Single arm ⁸ Open label ^{8,10} Prospective ¹¹			
	[97] ⁶ Attia et al., [7] ⁷ Srinivas, Feldman. [105] ⁸ Chadha et al., [19] ⁹ Gee et al., [41] ¹⁰ Chandler et al.,	HGPIN or PCa (n = 31 cases) (>95 % white race) ¹⁰ healthy black men (n = 105) ¹¹ healthy men (n = 12786 men) ¹²			Placebo-controlled ^{11,12}			
Jornful	[23] ¹¹ Manson et al., [67] ¹² Schor et al.	mCPDC (n = 052 acces)	Not reported	Curring	Dhace III. open lebel			
Harmful Null/ Protective	Scher et al., [96] Beer et al., [14]	mCRPC (n = 953 cases) mPCa (n = 250 cases)	Not reported Not reported	Survival PSA Survival	Phase III, open-label, randomized clinical trial Phase II, double-blinded, randomized clinical trial			

^a Studies ordered in subsections by study result: Protective, Null, Harmful, Mixed.

^b For consistency, the percentage of study population with vitamin D deficiency is based on controls only with < 30 nmol/L as standard deficiency definition (unless otherwise noted). Serum concentrations of 25(OH)D given in ng/mL were converted to nmol/L, using the conversion factor (1 ng/mL = 2.5 nmol/L).

Black men remains difficult, as most clinical trials have primarily involved white participants. Skin pigmentation originally evolved as an adaptive mechanism to protect against the harmful effects of intense solar UVB radiation in lower latitude regions, helping to prevent severe sunburn, DNA damage, and the degradation of skin folate (Ames, Grant, and Willett 2021; P. Jones et al., 2018). However, as populations migrated to higher latitudes where UVB exposure is significantly diminished, skin pigmentation reduced cutaneous synthesis of vitamin D, resulting in vitamin D deficiency and potentially contributing to adverse health outcomes, which led to loss of pigmentation as populations evolved (Ames, Grant, and Willett 2021). Data from the National Health and Nutrition Examination Survey (2001-2010) showed that Blacks had the highest prevalence of deficiency at 71.9 %, compared to 42.8 % of Hispanics and only 18.6 % of non-Hispanic Whites (Xuefeng Liu, Baylin, and Levy 2018). These findings underscore the critical need for maintaining adequate vitamin D levels in the general population and highlight the importance of investigating how vitamin D deficiency affects the health of at-risk groups.

Black men face both vitamin D deficiency and disproportionately high rates of aggressive PCa. They have both a higher incidence and worse outcomes of PCa, as highlighted by data from 2017 to 2019 indicated that the lifetime risk of being diagnosed with PCa was 17.3 % for non-Hispanic Black men, compared to 12.6 % for non-Hispanic White men in the United States (Surveillance Research Program, NCI 2023). Furthermore, data from 2018 to 2020 showed that the lifetime risk of dying from PCa was 3.3 % for non-Hispanic Black men, while it was 2.1 % for non-Hispanic White men (Surveillance Research Program, NCI 2023). These marked disparities in the National Cancer Institute's Surveillance Epidemiology and End Results (SEER) data underscore the need for ongoing research to unravel the complex array of factors contributing to these differences.

One study analyzed over 3000 pathology reports related to PCa and found that African American men had higher rates of cancer detection, more severe PCa (as indicated by Gleason scores), and were diagnosed at a younger age (Bigler, Pound, and Zhou 2011). However, it's important to note that this retrospective study relied on self-identified race/ ethnicity rather than genetic ancestry testing. In 2020, a study involving a large and diverse cohort of 60,035 men diagnosed with PCa within the Veterans Affairs (VA) health care system aimed to examine how healthcare inequities contribute to racial disparities in PCa (Riviere et al., 2020). In this equal-access medical environment, researchers found that African American men did not present with more advanced disease stages or poorer outcomes compared to non-Hispanic White men (Riviere et al., 2020). Contrary to many national studies highlighting racial disparities in PCa, this study revealed that African American men were diagnosed at younger ages and had higher PSA levels; surprisingly, they were less likely to have high Gleason scores (8-10), advanced clinical T classifications (>3, indicating tumor extension beyond the prostate), or distant metastatic disease (Riviere et al., 2020). In 2022, a similar investigation was conducted on an even larger group of 92,269 men diagnosed with PCa from the VA health care system, focusing on distant metastasis as a primary endpoint rather than long-term survival (Yamoah et al., 2022). Consistent with the previous study, they found that African American men were younger and had higher PSA levels at diagnosis. However, they also discovered that these men had double the incidence of developing both localized and metastatic PCa (Yamoah et al., 2022). Among those who received definitive treatment, African American men exhibited a higher residual metastatic burden after treatment compared to their non-Hispanic White counterparts, regardless of risk category (Yamoah et al., 2022). This study reinforced the existence of racial disparities in PCa, emphasizing the need to evaluate the effects of treatment and access to healthcare.

3.9. Vitamin D and prostate cancer in Black men

Few studies have exclusively focused on Black men, and the only

randomized, placebo-controlled trial on vitamin D supplementation among healthy Black men without a PCa history found no significant effect on PSA levels [23]. Given the higher risk of both lethal PCa and vitamin D deficiency among Black men, these epidemiological findings highlight the need to include Black and other vitamin D-deficient populations in research to better understand the role of systemic vitamin D deficiency in PCa risk and progression, especially in those at increased risk.

Recognizing that Black men face higher rates of vitamin D deficiency as well as increased PCa incidence and mortality, numerous studies—including prospective, case-control, and clinical trials—have aimed to explore links between these disparities, as summarized in Table 4. In 1993, Corder et al. conducted a pre-diagnostic study using stored blood samples from 90 Black and 91 White men diagnosed with PCa, along with matched controls, to compare PCa risk in relation to vitamin D status between the two groups [26]. Although this small study did not find a significant link between vitamin D levels and PCa incidence in Black versus White men, it spurred further research on this disparity.

Subsequent larger-scale prospective studies have shown evidence supporting vitamin D's protective effect against PCa in African American men [106,79,80]. These studies have demonstrated that low levels of 25 (OH)D are linked to a higher overall risk of PCa among African American men [79] and are also significantly associated with more aggressive cancer and advanced tumor characteristics, such as higher Gleason scores and tumor stages [106,79,80]. A notable strength of these studies is their substantial representation of Black men and the higher prevalence of vitamin D deficiency (ranging from 40 % to 60 %) among participants, which has facilitated a more accurate evaluation of vitamin D deficiency's role in PCa.

4. Discussion

In sum, the epidemiological research on vitamin D's role in PCa is inconsistent, with several factors contributing to these discrepancies. This is primarily due to inherent challenges in study design and execution. Many studies do not account for factors such as sun exposure and dietary intake (Yeum, Song, and Joo 2016). Another major issue is the difficulty in controlling vitamin D intake, as participants often self-supplement with vitamin D, especially when they are aware they are part of a clinical trial. Furthermore, vitamin D levels can vary widely among individuals due to factors such as diet, sunlight exposure, and genetics, complicating the interpretation of results. Often, initial vitamin D status of the patients are not considered to ensure supplementation only in those who are deficient.

PCa itself is biologically complex, with multiple genetic, environmental, and hormonal influences, making it difficult to isolate the impact of vitamin D. Study designs often suffer from limitations, including small sample sizes, short durations, and inadequate control for confounding variables like age, lifestyle, and comorbidities. PCa is a slow growing tumor, and short term vitamin D interventions do not reverse decades, perhaps a lifetime of vitamin D deficiency. The timing and dosage of vitamin D supplementation may not always be optimal, which could influence the effectiveness of the intervention. Racial and genetic differences also play a significant role, as certain populations, particularly Black men, are more likely to have lower vitamin D levels and may respond differently to supplementation. The lack of diversity in study populations, often dominated by individuals of European ancestry, further limits the generalizability of findings.

For PCa, it essential to understand the endpoints analyzed in the study. Given the high incidence of indolent PCa, studies that evaluate overall PCa risk, are unlikely to be clinically informative. Whereas studies that assess aggressive and lethal PCa are highly relevant. For example, a large collaborative analysis combining data from 19 prospective cohort and nested case-control studies, including over 30,000 cases and controls, reported that higher 25(OH)D levels were linked to an increased overall incidence of PCa. However, this association was

Table 4

Research studies investigating the role of vitamin D on prostate cancer in African American men^{a.b}. This table consists of research studies selected from SUPPLE-MENTAL TABLE I that specifically demonstrate the relationship between vitamin D and prostate cancer in African American or Black men. Each article was thoroughly reviewed, and relevant data were extracted and documented in the table, including population demographics, the percentage of vitamin D deficient participants (if reported), the key findings, study type classification, as well as the proposed role of vitamin D in prostate cancer. Each study was classified by study type and sorted into subsections: Prospective Cohort and Cohort, Prospective Case-Control, Nested Case-Control, and Case-Control Studies; Pilot Studies and Clinical Trials. Within each subsection, studies are organized chronologically by publication year and subsequently alphabetized by the authors' names.

Author/ Year	Population	VitD Deficient Population	Overall Findings	Study Type	VitD Role
Prospective C	Cohort and Cohort Studies	-			
Murphy et al., [79]	Men 40–79 in Chicago, Illinois US undergoing first prostate biopsy for elevated PSA or abnormal DRE ($n=667$)	~40 % of cohort (<50 nmol/L)	Low 25(OH)D levels associated with higher Gleason grade and tumor stage in European men. Low 25(OH)D levels associated with increased PCa risk and high Gleason grade and tumor stage in African American men (measured 25(OH)D levels only).	Prospective cohort study	Protective
Steck et al., [106]	Men 40–79 in North Carolina and Louisiana, US with initial diagnosis of histologically confirmed PCa (n = 1200 cases)	~47 % of cohort (<50 nmol/L)	High 25(OH)D levels associated in African American men with increased PCa aggressiveness with low calcium intake and decreased PCa aggressiveness with high calcium intake (measured 25(OH)D levels only).	Prospective cohort study	Harmful/ Protective
Nelson et al., [80]	African American (self-described) men 40–85 in Washington, DC, US diagnosed with incident PCa (n = 155 cases)	~60 % of cases (<50 nmol/L)	Low 25(OH)D levels associated with increased risk of aggressive PCa (measured 25(OH)D levels only).	Cohort study	Protective
Prospective	Case-Control, Nested Case-Control, and Case-Co	ntrol Studies			
Corder et al., [26]	Black and White men in California, US diagnosed with PCa along with matched controls ($n=90$ black and $n=91$ white cases/ $n=90$ black and $n=91$ white matched control pairs)	13.3 % of controls (<37.5 nmol/L)	No significant associations between 25(OH)D levels and PCa risk. High 1,25(OH)2D levels associated with decreased PCa risk, especially in older men (>57) or those with low 25(OH)D (measured both 25(OH)D and 1,25(OH)2D levels).	Prospective case- control study	Null/ Protective
Kristal et al., [61]	Men \geq 50 (for African American) or \geq 55 (other) in US, Canada, and Puerto Rico diagnosed with primary PCa for cases or blood samples available for cohort (n = 1731 cases + n = 3203 cohort)	> 25 % of cases and ~30 % of cohort (<50 nmol/L)	U-shaped association of 25(OH)D levels and total PCa risk, especially in high-grade disease. In African American men, high 25(OH)D levels associated with decreased risk of high-grade PCa only (measured 25(OH)D levels only).	Nested case-cohort study	Protective
Jackson et al., [53]	Men 40–80 in Jamaica recently diagnosed with histologically confirmed PCa along with controls (n = 146 cases/n = 191 controls) (predominantly black)	~13 % of controls (<50 nmol/L)	High 25(OH)D levels associated with increased PCa risk (measured 25(OH)D levels only).	Case-control study	Harmful
Paller et al., [88]	Black men ≥ 40 in Washington, D.C., US diagnosed with PCa along with matched controls (n = 90 cases/n = 62 matched control pairs)	~68 % of controls (<75 nmol/L)	No significant associations between 25(OH)D levels or dietary intake/supplementation and PCa risk (measured 25(OH)D levels and dietary intake).	Case-control study	Null
([10], 201)	Men 40–79 in Chicago, Illinois and Washington, D.C., US diagnosed with histologically confirmed PCa along with controls (n = 699 cases/n = 958 controls)	Not reported.	High vitD dietary intake associated with decreased risk of aggressive PCa. High vitD dietary intake associated with decreased total PCa risk in African Americans (measured dietary intake only).	Case-control study	Protective
Layne et al., [62]	Black men 55–74 in US diagnosed with PCa along with matched controls (n = 226 cases/ $n=452$ matched controls 1:2)	~13 % of controls (<25 nmol/L)	No significant associations between 25(OH)D levels and PCa risk. High 25(OH)D levels associated with decreased risk of nonaggressive disease (measured 25(OH)D levels only).	Nested case-control study	Null/ Protective
	and Clinical Trials	Not reported	No cignificant offset of vitD cumplementation	Drocpostivo	N1+11
Chandler et al., [23]	Black men supplemented with 1000, 2000, or 4000 IU vitD or placebo (n $=$ 105)	Not reported.	No significant effect of vitD supplementation and PSA levels (measured 25(OH)D levels only).	Prospective, randomized, double- blind, placebo- controlled clinical trial	Null

^a Studies ordered in subsections by study type classification: Prospective Cohort and Cohort Studies; Prospective Case-Control, Nested Case-Control, and Case-Control Studies; Pilot Studies and Clinical Trials. Within each subsection, studies ordered chronologically by publication date and subsequently alphabetically by authors' last name.

only observed for non-aggressive PCa, not for aggressive forms [112]. The authors propose that this positive link could be due to detection bias, as men who are health-conscious may maintain adequate vitamin D levels and are more likely to undergo PSA testing and seek medical care for early symptoms [112]. This undermines efforts to assess the true effect of vitamin D on PCa risk and progression.

Another significant trend is the U-shaped association observed between serum 25(OH)D levels and total PCa risk, indicating that both very high and very low vitamin D levels may elevate PCa risk [61,74, 117]. This U-shaped pattern also extends to advanced, high-grade

disease [61] and PCa-specific mortality [74]. These findings highlight the importance of determining an optimal range for vitamin D levels to support prostate health, potentially reducing PCa incidence, disease aggressiveness, and PCa-specific mortality, as well as other health conditions.

In addition to observational studies, interventional research, including pilot studies and clinical trials, has explored vitamin D's role in PCa. Early pilot studies suggested a protective benefit of vitamin D for men with histologically confirmed PCa or clinical suspicion of the disease [46,124,37]. Prediagnostic studies, meaning before patients were

^b For consistency, the percentage of study population with vitamin D deficiency is based on controls only with < 30 nmol/L as standard deficiency definition (unless otherwise noted). Serum concentrations of 25(OH)D given in ng/mL were converted to nmol/L, using the conversion factor (1 ng/mL = 2.5 nmol/L).

diagnosed with PCa, found low serum 1,25(OH)D levels to be predictive of PCa risk [26]. Research on estimated dietary vitamin D intake has produced mixed results. Some studies found weak inverse associations between high dietary vitamin D intake and reduced PCa risk [10,116], while others found no significant relationship [45,90]. Similarly, studies assessing serum vitamin D levels and PCa incidence show contradictory findings. While some report a protective role of vitamin D [74], others observe harmful or null associations [123,9]. However, evidence points to a protective effect of vitamin D in aggressive or advanced PCa [44, 49]. When assessing PCa mortality, the role of vitamin D becomes clearer. Case-control studies consistently show that high serum 25(OH)D levels are associated with a decreased risk of lethal PCa [101,73]. Meta-analyses support this protective effect [104,27]. The discrepancies in these findings may be explained by variations in geographic location, sun exposure, and study design.

While the role of vitamin D in PCa remains an ongoing and debated topic, significant challenges persist in designing studies that can yield definitive results. Vitamin D is a complex metabolite, and it is impossible for any intervention to fully replicate the long-term effects of lifelong deficiency. The variability in vitamin D levels across individuals, compounded by racial disparities, underscores the need for more populationspecific studies. While many studies in this review reported null findings, there remains strong evidence suggesting that vitamin D may play a critical role in PCa, particularly in populations at higher risk, such as Black men. This research has the potential to enhance diagnosis, prediction, prevention, treatment, and survival outcomes, while also shedding light on biological differences in disease progression across races. Ultimately, the question remains: Could maintaining sufficient vitamin D levels help prevent PCa or reduce its severity, especially in atrisk populations? These insights may not only address racial disparities but also inform broader strategies for PCa prevention and treatment in all populations.

CRediT authorship contribution statement

Kirsten D. Krieger: Writing – original draft. **Adriana Duraki:** Writing – original draft, Writing – review & editing. **Larisa Nonn:** Conceptualization, Funding acquisition, Supervision, Writing – review & editing.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Larisa Nonn reports financial support was provided by National Institutes of Health. Larisa Nonn reports a relationship with National Institutes of Health that includes: funding grants. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by Department of Defense Prosate Cancer Research Program Grant #W81XWH-20-1-0182.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jsbmb.2025.106675.

Data availability

No data was used for the research described in the article.

References

- [1] A. Acikgoz, D. Cimrin, G. Ergor, Effect of serum 25-hydroxyvitamin D level on lung, breast, colorectal and prostate cancers: a nested case-control study, East. Mediterr. Health J. = La Rev. De. Sante De. La Mediterr. Orient. = Al-Majallah Al-Sihhiyah Li-Sharq Al-Mutawassit 26 (7) (2020) 794–802, https://doi.org/ 10.26719/emhj.20.035.
- [2] J. Ahn, U. Peters, D. Albanes, M.P. Purdue, C.C. Abnet, N. Chatterjee, R.L. Horst, et al., Serum vitamin D concentration and prostate cancer risk: a nested case-control study, J. Natl. Cancer Inst. 100 (11) (2008) 796–804, https://doi.org/10.1093/jnci/djn152.
- [3] M.H. Ahonen, L. Tenkanen, L. Teppo, M. Hakama, P. Tuohimaa, Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland), Cancer Causes Control.: CCC 11 (9) (2000) 847–852, https://doi.org/10.1023/a: 1008923802001.
- [4] D. Albanes, A.M. Mondul, K. Yu, D. Parisi, R.L. Horst, J. Virtamo, S.J. Weinstein, Serum 25-hydroxy vitamin D and prostate cancer risk in a large nested casecontrol study, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 20 (9) (2011) 1850–1860, https://doi.org/ 10.1158/1055-9965 FPI-11-0403
- [5] M. Amiri, D. Elieh Ali Komi, A. Vaisi-Raygani, A. Kiani, M. Moradi, M. Aliyari, Z. Rahimi, E. Mohammadi-Noori, H. Bashiri, Association between vitamin D binding protein gene polymorphism (Rs7041), vitamin D receptor, and 25-hydroxyvitamin D serum levels with prostate cancer in Kurdish population in west of Iran, Pathol. Oncol. Res.: POR 28 (2022) 1610246, https://doi.org/10.3389/pore.2022.1610246.
- [6] M.F. Atoum, D. AlKateeb, S.A. AlHaj Mahmoud, The Fok1 vitamin D receptor gene polymorphism and 25(OH) D serum levels and prostate cancer among Jordanian men, Asian Pac. J. Cancer Prev.: APJCP 16 (6) (2015) 2227–2230, https://doi.org/10.7314/apjcp.2015.16.6.2227.
- [7] S. Attia, J. Eickhoff, G. Wilding, D. McNeel, J. Blank, H. Ahuja, A. Jumonville, et al., Randomized, double-blinded phase II evaluation of docetaxel with or without doxercalciferol in patients with metastatic, androgen-independent prostate cancer, Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 14 (8) (2008) 2437–2443, https://doi.org/10.1158/1078-0432.CCR-07-4274.
- [8] C.M. Barnett, C.M. Nielson, J. Shannon, J.M. Chan, J.M. Shikany, D.C. Bauer, A. R. Hoffman, E. Barrett-Connor, E. Orwoll, T.M. Beer, Serum 25-OH vitamin D levels and risk of developing prostate cancer in older men, Cancer Causes Control.: CCC 21 (8) (2010) 1297–1303, https://doi.org/10.1007/s10552-010-9557-v.
- [9] J.A. Baron, M. Beach, K. Wallace, M.V. Grau, R.S. Sandler, J.S. Mandel, D. Heber, E.R. Greenberg, Risk of prostate cancer in a randomized clinical trial of calcium supplementation, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 14 (3) (2005) 586–589, https://doi.org/ 10.1158/1055-9965.EPI-04-0319.
- [10] K. Batai, A.B. Murphy, M. Ruden, J. Newsome, E. Shah, M.A. Dixon, E.T. Jacobs, C.M.P. Hollowell, C. Ahaghotu, R.A. Kittles, Race and BMI modify associations of calcium and vitamin D intake with prostate cancer, BMC Cancer 17 (1) (2017) 64, https://doi.org/10.1186/s12885-017-3060-8.
- [11] T.M. Beer, K.M. Eilers, M. Garzotto, M.J. Egorin, B.A. Lowe, W.D. Henner, Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer, J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 21 (1) (2003) 123–128, https://doi.org/10.1200/jco.2003.05.117.
- [12] T.M. Beer, M. Garzotto, N.M. Katovic, High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer, Am. J. Clin. Oncol. 27 (5) (2004) 535–541, https://doi.org/10.1097/01.coc.0000136020.27904.9c.
- [13] T.M. Beer, D. Lemmon, B.A. Lowe, W.D. Henner, High-dose weekly oral calcitriol in patients with a rising PSA after prostatectomy or radiation for prostate carcinoma, Cancer 97 (5) (2003) 1217–1224, https://doi.org/10.1002/ coer_11179
- [14] T.M. Beer, C.W. Ryan, P.M. Venner, D.P. Petrylak, G.S. Chatta, J.D. Ruether, C. H. Redfern, et al., Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT investigators, J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 25 (6) (2007) 669–674, https://doi.org/10.1200/JCO.2006.06.8197.
- [15] S.I. Berndt, H.B. Carter, P.K. Landis, K.L. Tucker, L.J. Hsieh, E.J. Metter, E. A. Platz, Baltimore Longitudinal Study of Aging, Calcium intake and prostate cancer risk in a long-term aging study: the Baltimore longitudinal study of aging, Urology 60 (6) (2002) 1118–1123, https://doi.org/10.1016/s0090-4295(02)
- [16] J. Brändstedt, M. Almquist, J. Manjer, J. Malm, Vitamin D, PTH, and calcium and the risk of prostate cancer: a prospective nested case-control study, Cancer Causes Control.: CCC 23 (8) (2012) 1377–1385, https://doi.org/10.1007/s10552-012-9948-3.
- [17] J. Brändstedt, M. Almquist, J. Manjer, J. Malm, Vitamin D, PTH, and calcium in relation to survival following prostate cancer, Cancer Causes Control.: CCC 27 (5) (2016) 669–677, https://doi.org/10.1007/s10552-016-0740-7.
- [18] M.M. Braun, K.J. Helzlsouer, B.W. Hollis, G.W. Comstock, Prostate cancer and prediagnostic levels of serum vitamin D metabolites (Maryland, United States), Cancer Causes Control.: CCC 6 (3) (1995) 235–239, https://doi.org/10.1007/ BF00051795.
- [19] M.K. Chadha, L. Tian, T. Mashtare, V. Payne, C. Silliman, E. Levine, M. Wong, C. Johnson, D.L. Trump, Phase 2 trial of weekly intravenous 1,25 dihydroxy cholecalciferol (Calcitriol) in combination with dexamethasone for castration-

- resistant prostate cancer, Cancer 116 (9) (2010) 2132–2139, https://doi.org/10.1002/cncr.24973.
- [20] J.S. Chan, T.M. Beer, D.I. Quinn, J.K. Pinski, M. Garzotto, M. Sokoloff, D. R. Dehaze, C.W. Ryan, A phase II study of high-dose calcitriol combined with mitoxantrone and prednisone for androgen-independent prostate cancer, BJU Int. 102 (11) (2008) 1601–1606, https://doi.org/10.1111/j.1464-410X.2008.08017.
- [21] J.M. Chan, E. Giovannucci, S.O. Andersson, J. Yuen, H.O. Adami, A. Wolk, Dairy products, calcium, phosphorous, vitamin D, and risk of prostate cancer (Sweden), Cancer Causes Control.: CCC 9 (6) (1998) 559–566, https://doi.org/10.1023/a: 1008823601897.
- [22] J.M. Chan, P. Pietinen, M. Virtanen, N. Malila, J. Tangrea, D. Albanes, J. Virtamo, Diet and prostate cancer risk in a cohort of smokers, with a specific focus on calcium and phosphorus (Finland), Cancer Causes Control.: CCC 11 (9) (2000) 859–867, https://doi.org/10.1023/a:1008947201132.
- [23] P.D. Chandler, E.L. Giovannucci, J.B. Scott, G.G. Bennett, I. Ng, A.T. Chan, B. W. Hollis, K.M. Emmons, C.S. Fuchs, B.F. Drake, Null association between vitamin D and PSA levels among black men in a vitamin D supplementation trial, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 23 (9) (2014) 1944–1947, https://doi.org/10.1158/1055-9965.EPI-14-0522.
- [24] C.P. Cheney, B. Thorand, C. Huth, K. Berger, A. Peters, V. Seifert-Klauss, M. Kiechle, K. Strauch, A.S. Quante, The association between serum 25-hydrox-yvitamin D and cancer risk: results from the prospective KORA F4 study, Oncol. Res. Treat. 41 (3) (2018) 117–121, https://doi.org/10.1159/000485512.
- [25] W.-W. Cheng, Z.-K. Wang, H.-F. Shangguan, Q. Zhu, H.-Y. Zhang, Are vitamins relevant to cancer risks? A mendelian randomization investigation, Nutrition (Burbank, Los Angeles County, Calif.) 78 (October) (2020) 110870, https://doi. org/10.1016/j.nut.2020.110870.
- [26] E.H. Corder, H.A. Guess, B.S. Hulka, G.D. Friedman, M. Sadler, R.T. Vollmer, B. Lobaugh, M.K. Drezner, J.H. Vogelman, N. Orentreich, Vitamin D and Prostate cancer: a prediagnostic study with stored sera, Cancer Epidemiol. Biomark. Prevent.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2 (5) (1993) 467–472.
- [27] F. Cui, Y. Qiu, W. Xu, C. Zou, Y. Fan, Association between pretreatment blood 25-hydroxyvitamin D level and survival outcomes in patients with clinically localized prostate cancer: an updated meta-analysis, Nutr. Cancer 76 (5) (2024) 395–403, https://doi.org/10.1080/01635581.2024.2328378.
- [28] H. Deneo-Pellegrini, E.D. Stefani, A. Ronco, M. Mendilaharsu, Foods, nutrients and prostate cancer: a case-control study in Uruguay, Br. J. Cancer 80 (3–4) (1999) 591–597, https://doi.org/10.1038/sj.bjc.6690396.
- [29] T. Der, B.A. Bailey, D. Youssef, T. Manning, W.B. Grant, A.N. Peiris, Vitamin D and prostate cancer survival in veterans, Mil. Med. 179 (1) (2014) 81–84, https://doi.org/10.7205/MILMED-D-12-00540.
- [30] M. Deschasaux, J.-C. Souberbielle, P. Latino-Martel, A. Sutton, N. Charnaux, N. Druesne-Pecollo, P. Galan, et al., A prospective study of plasma 25-hydroxyvitamin D concentration and prostate cancer risk, Br. J. Nutr. 115 (2) (2016) 305–314, https://doi.org/10.1017/S0007114515004353.
- [31] V.I. Dimitrakopoulou, K.K. Tsilidis, P.C. Haycock, N.L. Dimou, K. Al-Dabhani, R. M. Martin, S.J. Lewis, et al., Circulating vitamin D concentration and risk of seven cancers: mendelian randomisation study, BMJ (Clin. Res. Ed.) 359 (2017) j4761, https://doi.org/10.1136/bmj.j4761.
- [32] Fang, Fang, J.L. Kasperzyk, I. Shui, W. Hendrickson, B.W. Hollis, K. Fall, J. Ma, et al., Prediagnostic plasma vitamin D metabolites and mortality among patients with prostate cancer, PloS One 6 (4) (2011) e18625, https://doi.org/10.1371/journal.pone.0018625.
- [33] J.M. Faupel-Badger, L. Diaw, D. Albanes, J. Virtamo, K. Woodson, J.A. Tangrea, Lack of association between serum levels of 25-hydroxyvitamin D and the subsequent risk of prostate cancer in Finnish men, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 16 (12) (2007) 2784–2786, https://doi.org/10.1158/1055-9965.EPI-07-0672.
- [34] D. Feldman, A.V. Krishnan, S. Swami, E. Giovannucci, B.J. Feldman, The role of vitamin D in reducing cancer risk and progression, Nat. Rev. Cancer 14 (5) (2014) 342–357, https://doi.org/10.1038/nrc3691.
- [35] T.W. Flaig, A. Barqawi, G. Miller, M. Kane, C. Zeng, E.D. Crawford, L.M. Glodé, A Phase II trial of dexamethasone, vitamin D, and carboplatin in patients with hormone-refractory prostate cancer, Cancer 107 (2) (2006) 266–274, https://doi. org/10.1002/cncr.21982.
- [36] D.Michal Freedman, A.C. Looker, Shih-C. Chang, B.I. Graubard, Prospective study of serum vitamin D and cancer mortality in the United States, J. Natl. Cancer Inst. 99 (21) (2007) 1594–1602, https://doi.org/10.1093/jnci/djm204.
- [37] B. Galunska, D. Gerova, P. Kosev, D. Anakievski, A. Hinev, Serum 25-hydroxy vitamin D levels in bulgarian patients with prostate cancer: a pilot study, Clin. Lab. 61 (3–4) (2015) 329–335, https://doi.org/10.7754/clin.lab.2014.140802.
- [38] S. Gandini, M. Boniol, J. Haukka, G. Byrnes, B. Cox, M.J. Sneyd, P. Mullie, P. Autier, Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma, Int. J. Cancer 128 (6) (2011) 1414–1424, https://doi.org/10.1002/ijc.25439.
- [39] P.H. Gann, J. Ma, C.H. Hennekens, B.W. Hollis, J.G. Haddad, M.J. Stampfer, Circulating vitamin D metabolites in relation to subsequent development of prostate cancer, Cancer Epidemiol. Biomark. Prevent.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 5 (2) (1996) 121–126.
- [40] J. Gao, G. Wei Wei, H. Wang, Y. Zhou, N. Fu, Liu, Circulating vitamin D concentration and risk of prostate cancer: a dose–response meta-analysis of prospective studies, Ther. Clin. Risk Manag. 14 (January) (2018) 95–104, https://doi.org/10.2147/TCRM.S149325.

- [41] J. Gee, H. Bailey, K. Kim, J. Kolesar, T. Havighurst, K.D. Tutsch, W. See, et al., Phase II open label, multi-center clinical trial of modulation of intermediate endpoint biomarkers by 1α-hydroxyvitamin D2 in patients with clinically localized prostate cancer and high grade pin, Prostate 73 (9) (2013) 970–978, https://doi.org/10.1002/pros.22644.
- [42] R. Gilbert, R.M. Martin, R. Beynon, R. Harris, J. Savovic, L. Zuccolo, G. E. Bekkering, W.D. Fraser, J.A.C. Sterne, C. Metcalfe, Associations of circulating and dietary vitamin D with prostate cancer risk: a systematic review and doseresponse meta-analysis, Cancer Causes Control.: CCC 22 (3) (2011) 319–340, https://doi.org/10.1007/s10552-010-9706-3.
- [43] R. Gilbert, C. Metcalfe, W.D. Fraser, J. Donovan, F. Hamdy, D.E. Neal, J.A. Lane, R.M. Martin, Associations of circulating 25-hydroxyvitamin D with prostate cancer diagnosis, stage and grade, Int. J. Cancer J. Int. Du Cancer 131 (5) (2012) 1187–1196, https://doi.org/10.1002/ijc.27327.
- [44] E. Giovannucci, Y. Liu, E.B. Rimm, B.W. Hollis, C.S. Fuchs, M.J. Stampfer, W. C. Willett, Prospective study of predictors of vitamin D status and cancer incidence and mortality in men, J. Natl. Cancer Inst. 98 (7) (2006) 451–459, https://doi.org/10.1093/jnci/djjj101.
- [45] E. Giovannucci, E.B. Rimm, A. Wolk, A. Ascherio, M.J. Stampfer, G.A. Colditz, W. C. Willett, Calcium and fructose intake in relation to risk of prostate cancer, Cancer Res. 58 (3) (1998) 442–447.
- [46] C. Gross, T. Stamey, S. Hancock, D. Feldman, Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (Calcitriol), J. Urol. 159 (6) (1998), https://doi.org/10.1016/S0022-5347(01)63236-1, 2035-39; discussion 2039, 2040.
- [47] D. Gupta, K. Trukova, B. Popiel, C. Lammersfeld, P.G. Vashi, The association between pre-treatment serum 25-hydroxyvitamin D and survival in newly diagnosed stage IV prostate cancer, PloS One 10 (3) (2015) e0119690, https://doi.org/10.1371/journal.pone.0119690.
- [48] A.K. Heath, A.M. Hodge, P.R. Ebeling, D.W. Eyles, D. Kvaskoff, D.D. Buchanan, G. G. Giles, E.J. Williamson, D.R. English, Circulating 25-hydroxyvitamin D concentration and risk of breast, prostate, and colorectal cancers: the melbourne collaborative cohort study, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 28 (5) (2019) 900–908, https://doi.org/10.1158/1055-9965.EPI-18-1155.
- [49] S.K. Holt, S. Kolb, R. Fu, R. Horst, Z. Feng, J.L. Stanford, Circulating levels of 25-hydroxyvitamin D and prostate cancer prognosis, Cancer Epidemiol. 37 (5) (2013) 666–670, https://doi.org/10.1016/j.canep.2013.07.005.
- [50] S.K. Holt, E.M. Kwon, J.S. Koopmeiners, D.W. Lin, Z. Feng, E.A. Ostrander, U. Peters, J.L. Stanford, Vitamin D pathway gene variants and prostate cancer prognosis, Prostate 70 (13) (2010) 1448–1460, https://doi.org/10.1002/ pros.21180.
- [51] S.K. Holt, E.M. Kwon, U. Peters, E.A. Ostrander, J.L. Stanford, Vitamin D pathway gene variants and prostate cancer risk, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 18 (6) (2009) 1929–1933, https://doi.org/10.1158/1055-9965.EPI-09-0113.
- [52] M. Huncharek, J. Muscat, B. Kupelnick, Dairy products, dietary calcium and vitamin D intake as risk factors for prostate cancer: a meta-analysis of 26,769 cases from 45 observational studies, Nutr. Cancer 60 (4) (2008) 421–441, https://doi.org/10.1080/01635580801911779.
- [53] M.D. Jackson, M.K. Tulloch-Reid, C.M. Lindsay, G. Smith, F.I. Bennett, N. McFarlane-Anderson, W. Aiken, K.C.M. Coard, Both serum 25-hydroxyvitamin D and calcium levels may increase the risk of incident prostate cancer in Caribbean men of African ancestry, Cancer Med. 4 (6) (2015) 925–935, https://doi.org/10.1002/cam4.457.
- [54] E.T. Jacobs, A.R. Giuliano, M.E. Martínez, B.W. Hollis, M.E. Reid, J.R. Marshall, Plasma levels of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and the risk of prostate cancer, J. Steroid Biochem. Mol. Biol. 89–90 (1–5) (2004) 533–537, https://doi.org/10.1016/j.jsbmb.2004.03.063.
- [55] X. Jiang, N.L. Dimou, K. Al-Dabhani, S.J. Lewis, R.M. Martin, P.C. Haycock, M. J. Gunter, et al., Circulating vitamin D concentrations and risk of breast and prostate cancer: a mendelian randomization study, Int. J. Epidemiol. 48 (5) (2019) 1416–1424, https://doi.org/10.1093/ije/dyy284.
- [56] T.J. Key, P.B. Silcocks, G.K. Davey, P.N. Appleby, D.T. Bishop, A case-control study of diet and prostate cancer, Br. J. Cancer 76 (5) (1997) 678–687, https://doi.org/10.1038/bic.1997.445.
- [57] M. Kivineva, M. Bläuer, H. Syvälä, T. Tammela, P. Tuohimaa, Localization of 1,25-dihydroxyvitamin D3 receptor (VDR) expression in human prostate, J. Steroid Biochem. Mol. Biol. 66 (3) (1998) 121–127, https://doi.org/10.1016/ s0960-0760(98)00054-5.
- [58] D. Krill, P. DeFlavia, R. Dhir, J. Luo, M.J. Becich, E. Lehman, R.H. Getzenberg, Expression patterns of vitamin D receptor in human prostate, J. Cell. Biochem. 82 (4) (2001) 566–572, https://doi.org/10.1002/jcb.1185.
- [59] A.R. Kristal, K.B. Arnold, M.L. Neuhouser, P. Goodman, E.A. Platz, D. Albanes, I. M. Thompson, Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial, Am. J. Epidemiol. 172 (5) (2010) 566–577, https://doi.org/10.1093/aje/kwq148.
- [60] A.R. Kristal, J.H. Cohen, P. Qu, J.L. Stanford, Associations of energy, fat, calcium, and vitamin D with prostate cancer risk, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 11 (8) (2002) 719–725
- [61] A.R. Kristal, C. Till, X. Song, C.M. Tangen, P.J. Goodman, M.L. Neuhauser, J. M. Schenk, et al., Plasma Vitamin D and prostate cancer risk: results from the selenium and vitamin E cancer prevention trial, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 23 (8) (2014) 1494–1504, https://doi.org/10.1158/1055-9965.EPI-14-0115.

- [62] T.M. Layne, S.J. Weinstein, B.I. Graubard, X. Ma, S.T. Mayne, D. Albanes, Serum 25-hydroxyvitamin D, vitamin D binding protein, and prostate cancer risk in black men, Cancer 123 (14) (2017) 2698–2704, https://doi.org/10.1002/ cncr.30634.
- [63] H. Li, M.J. Stampfer, J.B.W. Hollis, L.A. Mucci, J.M. Gaziano, D. Hunter, E. L. Giovannucci, J. Ma, A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer, PLoS Med. 4 (3) (2007) e103, https://doi.org/10.1371/journal.pmed.0040103.
- [64] G. Liu, G. Wilding, M.J. Staab, D. Horvath, K. Miller, A. Dresen, D. Alberti, R. Arzoomanian, R. Chappell, H.H. Bailey, Phase II study of 1alpha-hydroxyvitamin D(2) in the treatment of advanced androgen-independent prostate cancer, Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 9 (11) (2003) 4077–4083.
- [65] D. Lowder, K. Rizwan, C. McColl, A. Paparella, M. Ittmann, N. Mitsiades, S. Kaochar, Racial disparities in prostate cancer: a complex interplay between socioeconomic inequities and genomics, Cancer Lett. 531 (April) (2022) 71–82, https://doi.org/10.1016/j.canlet.2022.01.028.
- [66] J. Ma, M.J. Stampfer, P.H. Gann, H.L. Hough, E. Giovannucci, K.T. Kelsey, C. H. Hennekens, D.J. Hunter, Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians, Cancer Epidemiol. Biomark. Prevent.: Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 7 (5) (1998) 385–390.
- [67] J.A.E. Manson, N.R. Cook, I.-M. Lee, W. Christen, S.S. Bassuk, S. Mora, H. Gibson, et al., Vitamin D supplements and prevention of cancer and cardiovascular disease, N. Engl. J. Med. 380 (1) (2019) 33–44, https://doi.org/10.1056/ NIE IMPG 1809044
- [68] D.T. Marshall, S.J. Savage, E. Garrett-Mayer, T.E. Keane, B.W. Hollis, R.L. Horst, L.H. Ambrose, M.S. Kindy, S. Gattoni-Celli, Vitamin D3 supplementation at 4000 international units per day for one year results in a decrease of positive cores at repeat biopsy in subjects with low-risk prostate cancer under active surveillance, J. Clin. Endocrinol. Metab. 97 (7) (2012) 2315–2324, https://doi.org/10.1210/ ic.2012.1451
- [69] J.B. Mason, R.W. Hay, J. Leresche, S. Peel, S. Darley, The story of vitamin D: from vitamin to hormone, Lancet. 1 (7853) (1974) 325–329. PMID: 4131169.
- [70] C. Mattiuzzi, G. Lippi, Current cancer epidemiology, J. Epidemiol. Glob. Health 9 (4) (2019) 217–222, https://doi.org/10.2991/jegh.k.191008.001.
- [71] T.N. McCray, The Differentiation of Patient-Derived Prostate Organoids and the Influence of Vitamin D, University of Illinois at Chicago, Chicago, IL, 2020, https://doi.org/10.25417/uic.13475388.v1.
- [72] H.E. Meyer, T.E. Robsahm, T. Bjørge, M. Brustad, R. Blomhoff, Vitamin D, season, and risk of prostate cancer: a nested case-control study within Norwegian health studies, Am. J. Clin. Nutr. 97 (1) (2013) 147–154, https://doi.org/10.3945/aicn.112.039222.
- [73] H.E. Meyer, N.C. Støer, S.O. Samuelsen, R. Blomhoff, T.E. Robsahm, M. Brustad, E.L. Giovannucci, T. Bjørge, Long term association between serum 25-hydroxyvitamin D and mortality in a cohort of 4379 men, PloS One 11 (3) (2016) e0151441. https://doi.org/10.1371/journal.pone.0151441.
- [74] K. Michaëlsson, J.A. Baron, G. Snellman, R. Gedeborg, L. Byberg, J. Sundström, L. Berglund, et al., Plasma vitamin D and mortality in older men: a community-based prospective cohort study, Am. J. Clin. Nutr. 92 (4) (2010) 841–848, https://doi.org/10.3045/aicn.2010.29749
- [75] B. Mikhak, D.J. Hunter, D. Spiegelman, E.A. Platz, B.W. Hollis, E. Giovannucci, Vitamin D receptor (VDR) gene polymorphisms and haplotypes, interactions with plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and prostate cancer risk, Prostate 67 (9) (2007) 911–923, https://doi.org/10.1002/pros.20570.
- [76] F.L. Miles, P.J. Goodman, C. Tangen, K.C. Torkko, J.M. Schenk, X. Song, M. Pollak, I.M. Thompson, M.L. Neuhouser, Interactions of the insulin-like growth factor axis and vitamin D in prostate cancer risk in the prostate cancer prevention trial, Nutrients 9 (4) (2017) 378, https://doi.org/10.3390/nu9040378.
- [77] A.M. Mondul, S.J. Weinstein, K.A. Moy, S. Männistö, D. Albanes, Circulating 25-hydroxyvitamin D and prostate cancer survival, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 25 (4) (2016) 665–669, https://doi.org/10.1158/1055-9965.EPI-15-0991.
- [78] M.J. Morris, O. Smaletz, D. Solit, W.K. Kelly, S. Slovin, C. Flombaum, T. Curley, et al., High-dose calcitriol, zoledronate, and dexamethasone for the treatment of progressive prostate carcinoma, Cancer 100 (9) (2004) 1868–1875, https://doi.org/10.1002/cncr.20185.
- [79] A.B. Murphy, Y. Nyame, I.K. Martin, W.J. Catalona, C.M.P. Hollowell, R. B. Nadler, J.M. Kozlowski, K.T. Perry, A. Kajdacsy-Balla, R. Kittles, Vitamin D deficiency predicts prostate biopsy outcomes, Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 20 (9) (2014) 2289–2299, https://doi.org/10.1158/1078-0432.CCR-13.3085
- [80] S.M. Nelson, K. Batai, C. Ahaghotu, T. Agurs-Collins, R.A. Kittles, Association between serum 25-hydroxy-vitamin D and aggressive prostate cancer in African American men, Nutrients 9 (1) (2016) 12, https://doi.org/10.3390/nu9010012.
- [81] T.E. Newsom-Davis, L.M. Kenny, S. Ngan, J. King, J. Waxman, The promiscuous receptor, BJU Int. 104 (9) (2009) 1204–1207, https://doi.org/10.1111/j.1464-410X.2009.08599.x.
- [82] A.M. Nomura, G.N. Stemmermann, J. Lee, L.N. Kolonel, T.C. Chen, A. Turner, M. F. Holick, Serum vitamin D metabolite levels and the subsequent development of prostate cancer (Hawaii, United States), Cancer Causes Control.: CCC 9 (4) (1998) 425–432, https://doi.org/10.1023/a:1008875819232.
- [83] Y.A. Nyame, A.B. Murphy, D.K. Bowen, G. Jordan, K. Batai, M. Dixon, C.M. P. Hollowell, et al., Associations between serum vitamin D and adverse pathology in men undergoing radical prostatectomy, J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 34 (12) (2016) 1345–1349, https://doi.org/10.1200/JCO.2015.65.1463.

- [84] J.-S. Ong, S.C. Dixon-Suen, X. Han, J. An, Esophageal Cancer Consortium, 23 and Me Research Team, Upekha Liyanage, et al., A comprehensive re-assessment of the association between vitamin D and cancer susceptibility using mendelian randomization, Nat. Commun. 12 (1) (2021) 246, https://doi.org/10.1038/ s41467.020-20368.w
- [85] J.-S. Ong, P. Gharahkhani, J. An, M.H. Law, D.C. Whiteman, R.E. Neale, S. MacGregor, Vitamin D and overall cancer risk and cancer mortality: a mendelian randomization study, Hum. Mol. Genet. 27 (24) (2018) 4315–4322, https://doi.org/10.1093/hmg/ddy307.
- [86] J.M. Ordóñez-Mena, B. Schöttker, U. Haug, H. Müller, J. Köhrle, L. Schomburg, B. Holleczek, H. Brenner, Serum 25-hydroxyvitamin d and cancer risk in older adults: results from a large German prospective cohort study, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 22 (5) (2013) 905–916, https://doi.org/10.1158/1055-9965.EPI-12-1332.
- [87] J.L. Osborn, G.G. Schwartz, D.C. Smith, R. Bahnson, R. Day, D.L. Trump, Phase II Trial of Oral 1,25-dihydroxyvitamin D (Calcitriol) in hormone refractory prostate cancer, Urol. Oncol. 1 (5) (1995) 195–198, https://doi.org/10.1016/1078-1439 (95)00061-5.
- [88] C.J. Paller, Y.M. Kanaan, D.A. Beyene, T.J. Naab, R.L. Copeland, H.L. Tsai, N. F. Kanarek, T.S. Hudson, Risk of prostate cancer in African-American men: evidence of mixed effects of dietary quercetin by serum vitamin D status, Prostate 75 (13) (2015) 1376–1383, https://doi.org/10.1002/pros.23018.
- [89] S.-Y. Park, R.V. Cooney, L.R. Wilkens, S.P. Murphy, B.E. Henderson, L.N. Kolonel, Plasma 25-hydroxyvitamin D and prostate cancer risk: the multiethnic cohort, Eur. J. Cancer (Oxf. Engl.: 1990) 46 (5) (2010) 932–936, https://doi.org/ 10.1016/j.ejca.2009.12.030.
- [90] S.-Y. Park, S.P. Murphy, L.R. Wilkens, D.O. Stram, B.E. Henderson, L.N. Kolonel, Calcium, vitamin D, and dairy product intake and prostate cancer risk: the multiethnic cohort study, Am. J. Epidemiol. 166 (11) (2007) 1259–1269, https://doi.org/10.1093/aje/kwm269.
- [91] P. Pazdiora, S. Svobodova, R. Fuchsova, R. Kucera, M. Prazakova, J. Vrzalova, A. Narsanska, et al., Vitamin D in colorectal, breast, prostate and lung cancer: a pilot study, Anticancer Res. 31 (10) (2011) 3619–3621.
- [92] R. Petrioli, A. Pascucci, E. Francini, S. Marsili, A. Sciandivasci, G. De Rubertis, G. Barbanti, A. Manganelli, F. Salvestrini, G. Francini, Weekly high-dose calcitriol and docetaxel in patients with metastatic hormone-refractory prostate cancer previously exposed to docetaxel, BJU Int. 100 (4) (2007) 775–779, https://doi. org/10.1111/j.1464-410X.2007.07019.x.
- [93] E.A. Platz, M.F. Leitzmann, B.W. Hollis, W.C. Willett, E. Giovannucci, Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and subsequent risk of prostate cancer, Cancer Causes Control.: CCC 15 (3) (2004) 255–265, https://doi.org/10.1023/B: CACO.000024245.24880.8a.
- [94] N. Sawada, M. Inoue, M. Iwasaki, T. Yamaji, T. Shimazu, S. Sasazuki, S. Tsugane, Plasma 25-hydroxy vitamin D and subsequent prostate cancer risk in a nested case-control study in Japan: the JPHC study, Eur. J. Clin. Nutr. 71 (1) (2017) 132–136. https://doi.org/10.1038/eign.2016.184.
- [95] J.M. Schenk, C.A. Till, C.M. Tangen, P.J. Goodman, X. Song, K.C. Torkko, A. R. Kristal, U. Peters, M.L. Neuhouser, Serum 25-hydroxyvitamin D concentrations and risk of prostate cancer: results from the prostate cancer prevention trial, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 23 (8) (2014) 1484–1493, https://doi.org/10.1158/1055-9965.RPI-13-1340.
- [96] H.I. Scher, X. Jia, K. Chi, R. de Wit, W.R. Berry, P. Albers, B. Henick, et al., Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer, J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 29 (16) (2011) 2191–2198, https://doi.org/10.1200/JCO.2010.32.8815.
- [97] G.G. Schwartz, M.C. Hall, D. Stindt, S. Patton, J. Lovato, F.M. Torti, Phase I/II Sstudy of 19-nor-1alpha-25-dihydroxyvitamin D2 (Paricalcitol) in advanced, androgen-insensitive prostate cancer, Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 11 (24 Pt 1) (2005) 8680–8685, https://doi.org/10.1158/1078-0432.CCR-05-1237
- [98] S. Shahvazi, S. Soltani, S.M. Ahmadi, R.J. de Souza, A. Salehi-Abargouei, The effect of vitamin D supplementation on prostate cancer: a systematic review and meta-analysis of clinical trials, Horm. Metab. Res. = Horm. Und Stoffwechs. = Horm. Metab. 51 (1) (2019) 11–21, https://doi.org/10.1055/a-0774-8809.
- [99] A. Shamseddine, F.S. Farhat, E. Elias, R.B. Khauli, A. Saleh, M.A. Bulbul, High-dose calcitriol, docetaxel and zoledronic acid in patients with castration-resistant prostate cancer: a phase II study, Urol. Int. 90 (1) (2013) 56–61, https://doi.org/10.1159/000343780.
- [100] I.M. Shui, A.M. Mondul, S. Lindström, K.K. Tsilidis, R.C. Travis, T. Gerke, D. Albanes, et al., Circulating vitamin D, vitamin D-related genetic variation, and risk of fatal prostate cancer in the national cancer institute breast and prostate cancer cohort consortium, Cancer 121 (12) (2015) 1949–1956, https://doi.org/ 10.1002/cncr.29320.
- [101] I.M. Shui, L.A. Mucci, P. Kraft, R.M. Tamimi, S. Lindstrom, K.L. Penney, K. Nimptsch, et al., Vitamin D-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case-control study, J. Natl. Cancer Inst. 104 (9) (2012) 690–699, https://doi.org/10.1093/jnci/djs189.
- [102] R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023, CA: A Cancer J. Clin. 73 (1) (2023) 17–48, https://doi.org/10.3322/caac.21763.
- [103] T. Skaaby, L.L.N. Husemoen, B.H. Thuesen, C. Pisinger, T. Jørgensen, N. Roswall, S. Christian Larsen, A. Linneberg, Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc.

- Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 23 (7) (2014) 1220–1229, https://doi.org/10.1158/1055-9965.EPI-14-0007.
- [104] Z.-Y. Song, Q. Yao, Z. Zhuo, Z. Ma, G. Chen, Circulating vitamin D level and mortality in prostate cancer patients: a dose-response meta-analysis, Endocr. Connect. 7 (12) (2018) R294–R303, https://doi.org/10.1530/EC-18-0283.
- [105] S. Srinivas, D. Feldman, A phase II trial of calcitriol and naproxen in recurrent prostate cancer, Anticancer Res. 29 (9) (2009) 3605–3610.
- [106] S.E. Steck, L. Arab, H. Zhang, J.T. Bensen, E.T.H. Fontham, C.S. Johnson, J. L. Mohler, et al., Association between plasma 25-hydroxyvitamin D, ancestry and aggressive prostate cancer among African Americans and European Americans in PCaP, PLoS ONE 10 (4) (2015) e0125151, https://doi.org/10.1371/journal.pone.0125151.
- [107] C. Stephan, M. Lein, J. Matalon, E. Kilic, Z. Zhao, J. Busch, K. Jung, Serum vitamin D is not helpful for predicting prostate cancer aggressiveness compared with the prostate health index, J. Urol. 196 (3) (2016) 709–714, https://doi.org/10.1016/j.juro.2016.03.009.
- [108] S. Swami, A.V. Krishnan, J.Y. Wang, K. Jensen, R. Horst, M.A. Albertelli, D. Feldman, Dietary vitamin D3 and 1,25-dihydroxyvitamin D3 (Calcitriol) exhibit equivalent anticancer activity in mouse xenograft models of breast and prostate cancer, Endocrinology 153 (6) (2012) 2576–2587, https://doi.org/ 10.1210/ep.2011.1600
- [109] A. Tavani, P. Bertuccio, C. Bosetti, R. Talamini, E. Negri, S. Franceschi, M. Montella, C.L. Vecchia, Dietary intake of calcium, vitamin D, phosphorus and the risk of prostate cancer, Eur. Urol. 48 (1) (2005) 27–33, https://doi.org/ 10.1016/j.eururg.2005.03.023.
- [110] N.M. Tiffany, C.W. Ryan, M. Garzotto, E.M. Wersinger, T.M. Beer, High dose pulse calcitriol, docetaxel and estramustine for androgen independent prostate cancer: a phase I/II study, J. Urol. 174 (3) (2005) 888–892, https://doi.org/10.1097/01. ju.0000169261.42298.e6.
- [111] R.C. Travis, F.L. Crowe, N.E. Allen, P.N. Appleby, A.W. Roddam, A. Tjønneland, A. Olsen, et al., Serum vitamin D and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), Am. J. Epidemiol. 169 (10) (2009) 1223–1232, https://doi.org/10.1093/aie/kwp022.
- [112] R.C. Travis, A. Perez-Cornago, P.N. Appleby, D. Albanes, C.E. Joshu, P.L. Lutsey, A.M. Mondul, et al., A collaborative analysis of individual participant data from 19 prospective studies assesses circulating vitamin D and prostate cancer risk, Cancer Res. 79 (1) (2019) 274–285, https://doi.org/10.1158/0008-5472.CAN-18-2318
- [113] S. Tretli, E. Hernes, J.P. Berg, U.E. Hestvik, T.E. Robsahm, Association between serum 25(OH)D and death from prostate cancer, Br. J. Cancer 100 (3) (2009) 450–454. https://doi.org/10.1038/si.bic.6604865.
- [114] D.L. Trump, M.K. Chadha, A.Y. Sunga, M.G. Fakih, U. Ashraf, C.G. Silliman, B. W. Hollis, et al., Vitamin D deficiency and insufficiency among patients with prostate cancer, BJU Int. 104 (7) (2009) 909–914, https://doi.org/10.1111/j.1464-410X.2009.08531.x.
- [115] D.L. Trump, D.M. Potter, J. Muindi, A. Brufsky, C.S. Johnson, Phase II trial of high-dose, intermittent calcitriol (1,25 Dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer, Cancer 106 (10) (2006) 2136–2142, https://doi.org/10.1002/cncr.21890.

- [116] M. Tseng, R.A. Breslow, B.I. Graubard, R.G. Ziegler, Dairy, calcium, and vitamin D intakes and prostate cancer risk in the national health and nutrition examination epidemiologic follow-up study cohort, Am. J. Clin. Nutr. 81 (5) (2005) 1147–1154, https://doi.org/10.1093/ajcn/81.5.1147.
- [117] P. Tuohimaa, L. Tenkanen, M. Ahonen, S. Lumme, E. Jellum, G. Hallmans, P. Stattin, et al., Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the nordic countries, Int. J. Cancer 108 (1) (2004) 104–108, https://doi.org/10.1002/ iic 11375
- [118] P. Tuohimaa, L. Tenkanen, H. Syvälä, S. Lumme, T. Hakulinen, J. Dillner, M. Hakama, Interaction of factors related to the metabolic syndrome and vitamin D on risk of prostate cancer, Cancer Epidemiol. Biomark. Prev.: A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 16 (2) (2007) 302–307, https://doi.org/10.1158/1055-9965.EPI-06-0777.
- [119] M. Umar, K.S. Sastry, A.I. Chouchane, Role of vitamin D beyond the skeletal function: a review of the molecular and clinical studies, Int. J. Mol. Sci. 19 (6) (2018) 1618, https://doi.org/10.3390/ijms19061618.
- [120] H.D. Vlajinac, J.M. Marinković, M.D. Ilić, N.I. Kocev, Diet and prostate cancer: a case-control study, Eur. J. Cancer (Oxf. Engl.: 1990) 33 (1) (1997) 101–107, https://doi.org/10.1016/s0959-8049(96)00373-5.
- [121] D. Wagner, D. Trudel, T.V.D. Kwast, L. Nonn, A.A. Giangreco, D. Li, A. Dias, et al., Randomized clinical trial of vitamin D3 doses on prostatic vitamin D metabolite levels and Ki67 labeling in prostate cancer patients, J. Clin. Endocrinol. Metab. 98 (4) (2013) 1498–1507, https://doi.org/10.1210/jc.2012-4019.
- [122] S.J. Weinstein, A.M. Mondul, W. Kopp, H. Rager, J. Virtamo, D. Albanes, Circulating 25-hydroxyvitamin D, vitamin D-binding protein and risk of prostate cancer, Int. J. Cancer 132 (12) (2013) 2940–2947, https://doi.org/10.1002/ iia.27060
- [123] Y.Y.E. Wong, Z. Hyde, K.A. McCaul, B.B. Yeap, J. Golledge, G.J. Hankey, L. Flicker, In older men, lower plasma 25-hydroxyvitamin D is associated with reduced incidence of prostate, but not colorectal or lung cancer, PloS One 9 (6) (2014) e99954, https://doi.org/10.1371/journal.pone.0099954.
- [124] T.C.S. Woo, R. Choo, M. Jamieson, S. Chander, R. Vieth, Pilot study: potential role of vitamin D (Cholecalciferol) in patients with PSA relapse after definitive therapy, Nutr. Cancer 51 (1) (2005) 32–36, https://doi.org/10.1207/ s15327914nc5101 5.
- [125] Y. Xu, X. Shao, Y. Yao, L. Xu, L. Chang, Z. Jiang, Z. Lin, Positive association between circulating 25-hydroxyvitamin D levels and prostate cancer risk: new findings from an updated meta-analysis, J. Cancer Res. Clin. Oncol. 140 (9) (2014) 1465–1477, https://doi.org/10.1007/s00432-014-1706-3.
- [126] S. Yaturu, S. Zdunek, B. Youngberg, Vitamin D levels in subjects with prostate cancer compared to age-matched controls, Prostate Cancer 2012 (2012) 524206, https://doi.org/10.1155/2012/524206.
- [127] L. Yin, E. Raum, U. Haug, V. Arndt, H. Brenner, Meta-analysis of longitudinal studies: serum vitamin D and prostate cancer risk, Cancer Epidemiol. 33 (6) (2009) 435–445, https://doi.org/10.1016/j.canep.2009.10.014.
- [128] C. Yuan, I.M. Shui, K.M. Wilson, M.J. Stampfer, L.A. Mucci, E.L. Giovannucci, Circulating 25-hydroxyvitamin D, vitamin D binding protein and risk of advanced and lethal prostate cancer, Int. J. Cancer 144 (10) (2019) 2401–2407, https://doi. org/10.1002/ijc.31966.