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A B S T R A C T   

Vitamin D resistance (VDRES) explains the necessity for higher doses of Vitamin D (VD) than those recommended 
for treatment success. VD receptor (VDR) signaling blockade, such as that caused by infections and poisons, is 
one basis for VDRES etiology. Mutations within genes affecting the VD system cause susceptibility to developing 
low VD responsiveness and autoimmunity. In contrast, VD hypersensitivity (VDHY) occurs if there is extra VD in 
the body; for example, as a result of an overdose of a VD supplement. Excess 1,25(OH)2D3 is produced in 
lymphomas and granulomatous diseases. The placenta produces excess 1,25(OH)2D3. Gene mutations regulating 
the production or degradation of 1,25(OH)2D3 enhance the effects of 1,25(OH)2D3. Increased 1,25(OH)2D3 levels 
stimulate calcium absorption in the gut, leading to hypercalcemia. Hypercalcemia can result in the calcification 
of the kidneys, circulatory system, or placenta, leading to kidney failure, cardiovascular disease, and pregnancy 
complications. The primary treatment involves avoiding exposure to the sun and VD supplements. The preva
lence rates of VDRES and VDHY remain unclear. One estimate was that 25%, 51%, and 24% of the patients had 
strong, medium, and poor responses, respectively. Heavy-dose VD therapy may be a promising method for the 
treatment of autoimmune diseases; however, assessing its potential side effects is essential. To avoid VD- 
mediated hypercalcemia, responsiveness must be considered when treating pregnancies or cardiovascular dis
eases associated with VD. Furthermore, how VD is associated with the related disorders remains unclear. 
Investigating responsiveness to VD may provide more accurate results.   

1. Introduction 

A noteworthy development in modern medicine is using vitamin D 
(VD) to treat and prevent rickets [1,2]. According to estimates, vitamin 
D deficiency (VDD) affects up to 40 % of people in the European Union 
and 24 % of Americans [3], and moderate cases of VDD are considered 
substantial health risks, even though severe cases are rare, and rickets is 
infrequent. VDD is associated with conditions such as cancer, connective 
tissue disorders, inflammatory bowel disorders, chronic hepatitis, food 
allergies, asthma, respiratory infections, and type 1 and 2 diabetes. 
However, most intervention studies have not proven a link between VDD 
and these conditions [4]. Calcitriol, a physiologically active VD, 

mediates its action by binding to the vitamin D receptor (VDR) [5]. VDR 
is present throughout the body, including in cells involved in immune 
modulation [6–15]. The almost universal expression of the VDR implies 
that the VD/VDR axis controls genes associated with several processes, 
including energy metabolism, immunological responses, cell growth and 
differentiation, and calcium homeostasis [16]. However, most inter
vention studies have not proven a link between VDD and these processes 
[4]. VD supplementation can increase serum 25OHD3 concentration to a 
high normal range. However, this has not been associated with benefits 
for global health, major diseases, or medical events such as cancer, 
cardiovascular events, diabetes mellitus, falls, or fractures, at least in 
largely VD-replete adults [16]. The importance of VD substitution for 
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preventing and treating rickets is indisputable. However, treatment re
sults for other diseases associated with VDD and VD are contradictory. 
This review attempts to determine the effects of VD responsiveness. 

1.1. VD metabolism 

A review of VD metabolism will help us understand the mechanisms 
associated with VD responsiveness and the utility of measuring VD 
metabolites when diagnosing VD responsiveness. 

The skin synthesizes cholecalciferol (VD3), a secosteroid that func
tions as a prohormone. Although dietary VD supplements can also 
produce it, endogenous synthesis in the skin is the main source of VD3. In 
the skin, UVB causes the phototransformation of 7-dehydrocholesterol 
into pre-VD3, and heat promotes the conversion of pre-VD3 into VD3. 
VD3 is mostly transferred from the skin to the bloodstream by D-binding 
protein (DBP). Notably, 25-hydroxylases (CYP2R1 and CYP27A1) 
modify VD3 via hydroxylation in the liver, resulting in 25-hydroxyvita
min D3 (25OHD3). Subsequently, 1α-hydroxylase (CYP27B1) performs a 
second hydroxylation to produce the active form, calcitriol [1,25 
(OH)2D3], predominantly in the kidneys. [5] However, hydroxylation 
can also occur in other tissues and cells. The active form interacts with 
the VDR and affects biological processes [5,17]. Furthermore, 24-hy
droxylase (CYP24A1) converts 25(OH)D3 and 1,25(OH)2D3 into inac
tive metabolites [5]. Additionally, 1,25(OH)2D3 concentration, blood 
calcium levels, and parathyroid hormone (PTH) levels principally con
trol CYP27B1 and CYP24A1 activity. Furthermore, klotho and FGF23 
negatively regulate CYP27B1 and positively regulate CYP24A1, linking 
VD metabolism to phosphate homeostasis (Fig. 1). [18] Free phosphate 
is filtered in the glomerulus of the human kidney before being reab
sorbed as it travels along the nephron. The sodium phosphate cotrans
porter (NaPi-IIa), which regulates phosphate reabsorption from primary 

urine in the proximal tubule, is encoded by SLC34A1. NaPi-Iia, Klotho, 
FGF23, PTH, and 1,25(OH)2D3 control renal phosphate levels. [19] In
testinal 1,25(OH)2D3 enhances calcium absorption. PTH increases cal
cium release from the bones into the circulation if the blood-ionized 
calcium content is low. PTH also accelerates the conversion of 25(OH)D3 
to 1,25(OH)2D3, which is then released into the bloodstream. PTH 
prevents phosphate reabsorption, resulting in larger quantities of 
ionized calcium and lower levels of water-soluble calcium phosphate 
salts. Consequently, the VD system has a direct feedback mechanism. 
PTH should be low in the lower third of the reference range if 25(OH)D3 
levels are physiologically high and vice versa. [20]. 

1.2. VD resistance and rickets 

In the 1930s, some children with rickets were observed to require 
high doses of VD to alleviate their symptoms. In 1937, Albright, Butler, 
and Bloomberg introduced the concept of VD resistance (VDRES) [21]. 
Further research revealed that these children had either hereditary de
fects in 1α-hydroxylase, leading to decreased active VD (VD-dependent 
rickets type I [VDDR-I], or congenital defects in VDR. When VDR is 
defective, genetic VD-resistant rickets (HVDRR), also known as VD- 
dependent rickets type II (VDDR-II), develops. Both are rare autosomal 
recessive disorders characterized by hypocalcemia, secondary hyper
parathyroidism, and early onset severe rickets. [22] Rare instances of 
HVDRR defects have been detected to cause this issue. Only 70 items 
were discussed in the 2007 article “Vitamin D-resistant diseases” [23]. 

1.3. Acquired form of VD resistance and autoimmune diseases 

Although VDRES is rare (see 1.2.), the concept of acquired VDRES 
has been developed, which is more common and could be related to 

Fig. 1. Vitamin D (VD) metabolism and synthesis. Mutations of the VD pathway. ( Glenville Jonesswith the permission of Glenville Jones. The two-step hydrox
ylation mechanism of VD synthesis and metabolism transforms dietary or skin-produced VD into its active hormonal form, 1,25-(OH)2D3. VD binds to the vitamin D 
receptor, controlling the amounts of phosphate and calcium in the serum, which has various biological effects. The enzyme 1-hydroxylase (CYP27B1) is responsible 
for converting VD into its physiologically active form, 1,25-(OH)2D3, which is degraded by 24-hydroxylase (CYP24A1). Serum calcium, parathyroid hormone, and 
1,25-(OH)2D3 levels control this process. Additionally, based on phosphate homeostasis, FGF23 affects VD metabolism by restricting the activity of 1,25-(OH)2D3 
through the inhibition of 1-hydroxylase (CYP27B1) and activation of 24-hydroxylase (CYP24A1) activity. SLC34A1 regulates proximal tubule phosphate reabsorption 
from primary urine. Red circles denote proteins in the VD machinery that can cause rickets or autoimmune conditions when mutated. Mutations in CYP24A1 and 
SLC34A1 can cause nephrolithiasis, hypercalcemia, hypercalciuria, and decreased PTH levels. Hypophosphatemia occurs in patients with SLC34A1 mutations. These 
mutations are highlighted in blue circles. Renal insufficiency, vascular calcification, and calcification in other organs can result from mutations in the CYP24A1 and 
SLC34A1 genes. 
This figure is adapted from Glenville Jones’ article with the permission of Glenville Jones [92] 
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autoimmune diseases. This resistance results from mutations in the VD 
system that occur during aging and exposure to environmental factors, 
thereby impairing VD hormone signaling. These environmental factors 
include pathogens such as the Ebstein-Barr virus [24], cytomegalovirus 
[25], legionella, escherichia coli, and Yersinia. [26]. These pathogens 
can block the VDR and alter host immune responses. Glucocorticoids can 
also disturb the VDR gene [27]. Aluminum can decrease renal CYP27B1 
activity in chickens [28] and has been found at high concentrations in 
the brain tissue of patients with multiple sclerosis (MS) [29]. Aging re
duces intestinal cholecalciferol absorption [30], decreases endogenous 
skin production [31] and VD hydroxylation [32]. The weakest link in the 
VD metabolic system is VDR, and the most significant indicators of ac
quired VDRES are mutations in the VDR [17,20]. The genes CYP2R1, 
CYP27A1, CYP27B1, and DBP (necessary for VD transport in circulation) 
and the cell-surface receptor megalin-cubilin, which is the membrane 
receptor for the 1,25(OH)2D3/DBP complex, also have mutations asso
ciated with autoimmune diseases [20]. 

Autoimmune disorders occur when the immune system mistakenly 
attacks healthy cells and tissues. VD is vital for maintaining a strong and 
healthy immune system. Therefore, VDD can increase the risk of auto
immune disorders by weakening the adaptive immune system. [33,34] 
Several autoimmune conditions such as autoimmune thyroid disease 
[35], systemic lupus erythematosus [36], rheumatoid arthritis [37], 
inflammatory bowel disease (IBD) [38,39], MS [43], and insulin- 
dependent type 1 diabetes mellitus [6] have been associated with 
VDD. However, more research is needed to determine if VDD is the cause 
or effect of these autoimmune disorders [33,34]. Patients with IBD often 
have difficulty absorbing VD, necessitating higher doses of VD to ach
ieve normal serum 25(OH)D levels. This can prevent the development of 
bone fragility, osteoporosis, and osteomalacia [38]. However, few ran
domized controlled trials have examined the effects of VD supplemen
tation on disease occurrence and severity. One study found that a higher 
dose of VD (2000 IU) led to lower levels of proinflammatory markers in 
children and adolescents with IBD than a lower dose of 400 IU [39]. 
Children with rheumatic diseases, especially those treated with steroids, 
are recommended to receive at least double the daily recommended dose 
of VD for their age (approximately 2000 UI/day) [40]. 

1.4. High-dose VD therapy 

Recent studies on treating autoimmune diseases have revealed the 
clinical advantages of high-dose VD therapy. A single high dose of VD3 
(100 000 IU) may positively affect health outcomes in older adults [41]. 
Large-dose, short-term VD supplementation has been shown to reduce 
insulin resistance compared to placebos in patients with type 2 diabetes 
[42]. Recommended serum 25(OH)D levels are usually 20 – 30 ng/ mL. 
In MS treatment, serum 25(OH)D levels of approximately 130 ng/mL are 
recommended for therapeutic effects. Clinical trials have shown that VD 
doses ranging from 10,000 to 40,000 IU/day are safe as an add-on 
therapy. In any case, these trials were relatively short in duration, had 
small sample sizes, and in many cases, were not placebo-controlled. The 
adverse effects during the trials were usually minor and manageable. 
The results of these trials are conflicting, and whether regular VD intake 
is reasonable beyond the correction of hypovitaminosis D remains un
clear. [43]. 

Dr. Cicero Coimbra, a neurologist from Brazil, used ultrahigh doses 
of VD to treat patients with autoimmune diseases [44,45]. This approach 
has been used in Germany to treat patients with autoimmune diseases 
since 2016. The fundamental idea behind high-dose VD3 therapy is that 
some patients have a non-hereditary, acquired type of VDRES and 
insufficient biological activity of 1,25(OH)2D3. To overcome this resis
tance, high doses of VD3 are administered to patients to unblock VDRs. 
The initial doses of VD3 in the Coimbra protocol depend on the auto
immune disease being treated. For MS, doses of up to 1000 IU of VD3 per 
kg of body weight may be used, whereas other autoimmune disorders 
require smaller doses. [20] In rheumatoid arthritis, systemic lupus 

erythematosus, psoriatic arthritis, psoriasis, Crohn’s disease, and ul
cerative colitis, initial VD3 doses of 300–500 IU/kg of body weight are 
used. Systemic scleroderma, ankylosing spondylitis, and Hashimoto’s 
thyroiditis require VD3 doses of 300 IU/kg of body weight, whereas 
other autoimmune diseases require VD3 doses of 150 IU/kg of body 
weight. The doses are gradually adjusted (usually lowered) during 
follow-up, based on a standardized procedure that considers the pa
tient’s clinical condition, calcium levels, and PTH concentrations. [20] 
Studies have shown that the Coimbra protocol is safe for patients with 
autoimmune diseases when oral VD3 is administered in large doses with 
a strict low-calcium diet and daily fluid intake of 2.5 L. Owing to the 
underlying VDRES, patients are protected against what is typically 
considered a potentially toxic dose, and the doses used in this protocol 
only have physiological effects. [46] The Coimbra protocol is similar to 
insulin resistance therapy in which higher doses are administered to 
address resistance [47]. 

1.5. VD responsiveness range 

Carsten Carlberg, a Professor of Biochemistry at the University of 
Eastern Finland, studied VD’s gene regulation and epigenetics. He found 
that people respond differently, molecularly and biochemically, to the 
same dosage of VD3. During the Finnish winter of 2015, 71 senior pre
diabetic participants in the VitDmet study received daily supplements of 
0, 1600, or 3200 IU VD3. This study focused on the effects of VD3 sup
plementation on mRNA expression of 12 VD-regulated genes and several 
VD-affected laboratory parameters. This study demonstrated that even 
high doses of VD3 (3200 IU) did not always have the desired VD- 
regulatory effects in participants, with 25 % of patients failing to 
respond as expected. According to this study, patients were categorized 
as low (24 %), mid (51 %), and high responders (25 %). [48] Later, in 
2017, the same research group conducted the VitDbol study, in which a 
group of healthy students received an 80,000 IU bolus dose of VD3. The 
results of the VitDbol study validated the findings of the VitDmet study. 
[49] To get an acceptable physiological response, such as lowering PTH 
concentrations or downregulating an activated adaptive immune sys
tem, patients with VDRES need substantial doses of VD3. Increased PTH 
levels, despite adequate 25(OH)D3 levels, are signs of acquired VDRES 
and can occur in patients with autoimmune diseases. In the VD system, 
PTH is essential for improving intestinal calcium absorption, triggering 
calcium release from the bones, boosting the conversion of 25(OH)D3 to 
1,25(OH)2D3, and preventing tubular phosphate reabsorption. An 
average 25(OH)D3 level should reduce the PTH levels to the lower third 
of the reference range. However, this negative feedback loop is dis
rupted in patients with autoimmune diseases. [20] On the VD respon
siveness continuum, individuals with VDRES fall at the low-response 
end [48,49]. 

1.6. VD hypersensitivity 

Vitamin D hypersensitivity patients (VDHY patients) are on the 
opposite side of the VD responsiveness continuum. They have either 
excess VD in the body or their bodies are sensitized to VD Because of 
this, the effects of VD for them are stronger than average. They don’t 
need as much VD as others. On the other hand, extra sunshine or rela
tively low therapeutic doses of VD can increase the effects of VD in the 
body, leading to increased intestinal calcium absorption, calcium 
mobilization from the bones, and hypercalcemia. [51] The group “VD 
hypersensitivity” is divided into subgroups “exogenous and endoge
nous” based on its etiology. 

Exogenous VDHY results from consuming extremely large amounts 
of pharmaceutical VD preparations. Values > 150 ng/mL (375 nmol/L) 
of serum 25(OH)D3 signify exogenous VDHY. The serum 1,25(OH)2D3 
levels are average. There is also hypercalcemia and low PTH [52]. Ac
cording to the 2011 recommendations of the Institute of Medicine, the 
maximum tolerated levels of VD intake is 1000 IU/d for newborns under 
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six months of age, 1500 IU/d for infants of six to 12 months of age, 2500 
IU/d for children of one to three years of age, 3000 IU/d for children of 
four–to eight years of age, and 4000 IU/d for adolescents and adults 
[55]. However, several studies have shown that VD is probably one of 
the least dangerous fat-soluble vitamins, far less dangerous than vitamin 
A [56]. 

Endogenous VD hypersensitivity syndrome was discovered more 
than 70 years ago. To treat rickets, children are administered high 
amounts of VD. While the majority of children responded favorably to 
this treatment, some displayed symptoms of hypercalcemia. This illness 
spread and became endemic in three distinct occurrences. The first 
occurred in Great Britain in the early 1950 s [57], the second in Poland 
in the 1970 s [58], and the third in East Germany in the 1980 s [59]. This 
syndrome was initially called idiopathic infantile hypercalcemia (IIH), 
but the name was misleading. It also occurs in adults, and its etiology is 
well-known. 

One cause for endogenous VDHY is ectopic synthesis of 1,25 
(OH)2D3. The placenta synthesizes extra 1,25(OH)2D3 during pregnancy 
[76]. Sarcoid lymph nodes synthesize extra 1,25(OH)2D3 [60–62]. 
Ectopic synthesis of 1,25(OH)2D3 is also observed in tuberculosis [63], 
lymphomas [64,65], fungal infections, leprosy, and other granuloma
tous diseases [51]. 

Another cause of endogenous VDHY is mutations in the genes 
responsible for the synthesis or catabolism of VD. In 2011, Shlingmann 
et al. reported alterations in CYP24A1 expression in patients with idio
pathic infantile hypercalcemia (IIH). CYP24A1 catabolizes 1,25(OH)2D3 
into its inactive metabolites. Mutations in the CYP24A1 gene result in 
the build-up of 1,25(OH)2D3 and a decrease in its degradation [Fig. 1]. 
[3,66] In 2017, Schlingmann et al. found that a mutation in the SLC34A1 
gene results in hypophosphatemia [4] by impairing the proximal tu
bules’ ability to reabsorb phosphate from primary urine [4,66]. There
fore, hypophosphatemia concurrently inhibits CYP24A1 and stimulates 
1α-hydroxylase (CYP27B1) (Fig. 1) [67]. The accumulation of 1,25 
(OH)2D3 is also an outcome of this mutation. Nephrolithiasis, decreased 
PTH levels, hypercalcemia, and hypercalciuria are the hallmarks of both 
mutations. (Fig. 1) Besides, mutations in SLC34A1 [4,66] cause hypo
phosphatemia. Other yet unknown abnormalities in the genes control
ling VD metabolism are expected, except for in CYP24A1 and SLC34A1 
[68]. 

In addition, an increase in the quantity of VDRs or saturation of the 
DBP capacity can lead to endogenous VDHY [52]. 

Endogenous VDHY, caused by gene mutations, constitutes a hered
itary risk factor because VD substitution can lead to the development of 
symptomatic hypercalcemia in otherwise healthy neonates [66]. Bial
lelic mutations result in the aforementioned clinical and biochemical 
phenotypes. Individuals carrying monoallelic gene mutations may 
exhibit hypersensitivity reactions to excess VD, have an attenuated 
disease, or be asymptomatic carriers [51]. 

1.6.1. Clinical signs of VD hypersensitivity and hypercalcemia 
Clinical signs of hypercalcemia are similar, although the etiology 

varies [50,54]. Only a small percentage of patients exhibit significant 
symptoms, and most patients are asymptomatic and diagnosed through 
routine examinations [51]. In babies, in addition to weight loss, clinical 
symptoms include polyuria, dehydration, vomiting, and constipation 
[66]. 

VDHY may remain undetected until adulthood, and its clinical signs 
may emerge later in life, particularly in monoallelic mutations. Exces
sive sun exposure, high-VD food products, or VD supplements can 
induce increased levels of 1,25(OH)2D3 and hypercalcemia in VDHY 
patients [51]. 

Chronic subclinical hypercalcemia and hypercalciuria result in kid
ney stones, adult renal insufficiency, and severely decreased kidney 
function. In addition to tubulointerstitial inflammation and fibrosis, 
mineral deposits associated with nephrocalcinosis play a role in devel
oping end-stage renal diseases [69–72]. Hypertension, arterial 

calcifications, and arterial vasoconstriction are cardiovascular symp
toms associated with hypercalcemia. Mutations in CYP24A1 have been 
associated with coronary artery calcification, which, in turn, leads to a 
higher risk of coronary heart disease. [73–75] Throughout pregnancy, 
the amount of 1,25(OH)2D3 produced by the placenta increases [76]. 
Patients with VDHY do not experience an increased VD breakdown. 
Serious pregnancy consequences include pancreatitis, nephrolithiasis, 
arterial hypertension, potentially fatal hypercalcemic crises, and 
lethality for the mother and/or the fetus. [77–81] Additional clinical 
manifestations of hypercalcemia include neuropsychiatric symptoms 
such as depression, hallucinations, anorexia, nausea, vomiting, con
stipation, peptic ulcer disease, pancreatitis, varying degrees of demin
eralization and fragility of the bone, and stupor and coma in severe cases 
[51]. 

Nonetheless, VDHY may remain undetected until adulthood, and its 
clinical signs may emerge later in life, particularly in monoallelic mu
tations. Excessive sun exposure, high-VD food products, or VD supple
ments can induce increased levels of 1,25(OH)2D3 and hypercalcemia in 
VDHY patients [51]. 

1.6.2. Diagnosis of VD hypersensitivity 
The diagnosis of VD hypersensitivity is challenging. Pregnancy, 

medication use, VD replacement, and related conditions such as lym
phomas, cancer, nephrocalcinosis, granuloma-forming illnesses, and 
hereditary diseases, as well as nephrolithiasis, decreased PTH levels, 
hypercalcemia, hypercalciuria, and hypophosphatemia should be care
fully considered. In the presence of excessive 25(OH)D3, the resulting 
hypercalcemia is known as exogenous VDHY. [51] In endogenous 
VDHY, elevated 1,25(OH)2D3 concentrations have been associated with 
hypercalcemia. [51] If pathogenic CYP24A1 mutations are suspected, 
the 25(OH)D3 to 24,25(OH)2D3 ratio should be evaluated. The 25(OH) 
D3 to 24,25(OH)2D3 ratio is approximately < 30 in most heterozygotes 
and individuals without pathogenic CYP24A1 mutations; however, it is 
generally > 80 in individuals with harmful mutations. Genetic testing 
must be performed if the ratio of 25(OH)D3 to 24,25(OH)2D3 is > 80. 
[82,83]. 

1.6.3. Treatment of VD hypersensitivity 
The primary course of hypercalcemia treatment is to reduce calcium 

intake and consume large amounts of water. Exogenous VDHY neces
sitates discontinuation of VD supplementation [51]. The central man
agement strategies for CYP24A1 mutations include reducing sun 
exposure and eliminating VD prophylaxis [3]. For SLC34A1 mutations, 
phosphate supplementation is the initial therapeutic option; reducing 
VD consumption does not normalize test findings [4]. Patients with 
genetic defects that cause hypercalcemia, granulomatous diseases, and 
lymphomas are advised to avoid exposure to sunlight [52]. Glucocorti
coids help reduce calcium levels by reducing intestinal calcium ab
sorption, increasing calcium excretion in the urine, and encouraging the 
creation of inactive metabolites [52]. Glucocorticoids have no thera
peutic effect in individuals with genetic defects that cause hypercalce
mia [51]. Patients with CYP24A1 mutations may need to be treated with 
rifampicin and azoles to treat hypercalcemia. Azole-containing medi
cations are CYP27B1 inhibitors. Rifampicin is a tuberculosis medicine 
that increases the activity of the enzyme CYP3A4, which, in this case, 
effectively inactivates VD metabolites compared to CYP24A1. [51]. 

1.6.4. Prevalence of VD hypersensitivity 
The prevalence of VD hypersensitivity remains unknown. A Polish 

population survey revealed biallelic variations in CYP24A1 and 
SLC34A1 are found in one in 32,465 births [58]. Severe VDHY is asso
ciated with biallelic mutations in the SLC34A1 or CYP24A1 genes [51]. 
The identification of heterozygous SLC34A1 and CYP24A1 mutations 
can be challenging. As a result, heterozygous mutations often remain 
undetected and are not detected until the VD substitution is used. In 
otherwise seemingly healthy neonates, CYP24A1 or SLC34A1 mutations 
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are familial risk factors for the development of symptomatic hypercal
cemia, which may be exacerbated by VD prophylaxis. Biallelic abnor
malities in the CYP24A1 gene may be present in 4–20 % of patients with 
calcium kidney stones [84]. Sarcoidosis frequently results in VDHY due 
to the ectopic synthesis of active VD [60]. The frequency of sarcoidosis 
varies significantly by region, ranging from one to five per 100,000 in
dividuals in South Korea, Japan, and Taiwan to 140–160 per 100,000 
individuals in Sweden and Canada [85]. Furthermore, the real-world 
prevalence of VDHY remains unknown [52]. According to two accu
rate but narrowly sampled studies, about 25 % of Finns have VDHY 
[48,49]. 

The prevalence of new CYP24A1 and SLC34A1 mutations, VD sup
plementation, and recently identified differences in genes regulating VD 
metabolism contribute to increased VDHY. The administration of VD3 at 
doses higher than those advised may increase the risk of VDHY [51–53]. 

Table 1 shows the main differences between VD resistance and VD 
hypersensitivity. 

2. Discussion 

The treatment of autoimmune diseases can be complicated. High- 
dose VD therapy may be used to treat VDRES effectively. However, 
the outcomes and potential negative repercussions must be carefully 
evaluated. 

VD has been shown to help treat or prevent cardiovascular disorders, 
and VDD has been recognized as a risk factor for these conditions in 
multiple trials [86]. In contrast, in individuals with VDHY, VD supple
mentation increases the prevalence of kidney disease and vascular 
calcification, which are risk factors for cardiovascular diseases [87–90]. 
Therefore, determining the responsiveness of each patient to VD is 
essential before treating or preventing cardiovascular diseases using VD. 

VDD is believed to increase the risks of pregnancy, and VD supple
mentation is commonly advised [91]. Nevertheless, in pregnancy, the 
amount of 1,25(OH)2D3 produced by the placenta increases [76]. 
Excessive VD production in the placenta, together with VD supple
mentation, may manifest as symptoms of VDHY, such as hypercalcemia 
and unfavorable pregnancy outcomes. The VD response can be evalu
ated using laboratory assays (parathyroid hormone, calcium, phosphate, 
25(OH)D3, and 24,25(OH)2D3) performed at the beginning and end of 
pregnancy. An analysis of the connections between difficulties during 
pregnancy and VD responses is possible. 

Intervention trials have not demonstrated the effectiveness of VD 
supplementation in treating extraskeletal VD-dependent disorders or a 
causal relationship between VDD and these diseases. The results of these 
studies were contradictory. Therefore, considering the VD response in 
this study may produce more accurate findings. 

Given the rarity of inborn resistance or hypersensitivity, adminis
tering the recommended amount of VD in neonates is desirable. How
ever, if newborns’ growth and development are unsatisfactory, their 
response to VD needs to be considered. 

Few studies concerning the responsiveness to VD have used small 
sample sizes. Based on these studies, the number of VD-sensitive and 
− resistant individuals in the population could reach up to 25 % in both 
groups. Therefore, studies with larger sample sizes are required to assess 
the importance of VD responsiveness in this population. 

3. Closing words 

VDD affects people worldwide. On the other hand, the risk of hy
percalcemia in individuals with VDHY caused by VD supplementation 
may increase as more people become aware of the health benefits of VD. 
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