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Abstract

Background: Vitamins are micronutrients involved in multiple physiological processes
critical for athletic performance. Because athletes are often exposed to increased oxidative
stress, higher metabolic turnover, and greater nutritional demands, which can potentially
lead to deficiencies in vitamins, understanding vitamin supplementation as a function of
sport discipline is of fundamental importance. Methods: This narrative review synthesizes
research findings from the past decade, supplemented with earlier studies where necessary,
focusing on vitamins A, C, D, E, and the B-complex vitamins. Peer-reviewed literature was
evaluated for evidence on the prevalence of deficiencies in athletes, physiological mecha-
nisms, supplementation strategies, and their effects on performance, injury prevention, and
recovery. Results: Vitamin D deficiency is highly prevalent among athletes, particularly
in indoor sports and during the winter months. Supplementation has been shown to im-
prove musculoskeletal health and potentially reduce injury risk. The antioxidant vitamins
C and E can attenuate exercise-induced oxidative stress and muscle damage; however,
excessive intake may impair adaptive responses such as mitochondrial biogenesis and
protein synthesis. Vitamin A contributes to immune modulation, metabolic regulation, and
mitochondprial function, while B-complex vitamins support energy metabolism and red
blood cell synthesis. Conclusions: Vitamin supplementation in athletes should be indi-
vidualized, targeting confirmed deficiencies and tailored to sport-specific demands, age,
sex, and training intensity. Dietary optimization should remain the primary strategy, with
supplementation serving as an adjunct when intake is insufficient. Further high-quality,
sport-specific, and long-term studies are needed to establish clear dosing guidelines and
to assess the balance between performance benefits and potential risks associated with
over-supplementation.
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1. Introduction

Athletes are often perceived as exemplary of a healthy lifestyle, characterized by
consistent engagement in physical activity, adherence to a balanced diet, and a proactive
approach to health maintenance [1]. In recent years, there has been a notable increase in
research and commercial interest directed toward the development of dietary supplements
specifically tailored to the needs of physically active populations [2]. The rationale for
supplementation among athletes is primarily based on the expectation that these products
can enhance physical performance, optimize health outcomes, and expedite post-exercise
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recovery [3-5]. The most frequently consumed supplements include creatine, caffeine,
isotonic beverages, vitamin D, energy bars, magnesium, and vitamin C [6,7].

Despite the common perception that athletes are generally better nourished than
the average population [8], emerging evidence indicates that micronutrient deficiencies
are prevalent within this demographic [9]. Among these, vitamin D deficiency appears
particularly common [4]. The elevated physical workload experienced by athletes increases
metabolic demands, rendering adequate dietary intake and targeted supplementation of
deficient vitamins especially critical [10]. Nevertheless, the current dietary reference intakes
for vitamins and minerals recommended for athletes are not differentiated from those for
the general population [11].

A balanced diet plays a pivotal role in sustaining optimal athletic performance due
to the diverse physiological functions of vitamins in the context of exercise [12-16]. These
functions include antioxidant defense, regulation of energy metabolism, facilitation of
blood coagulation, modulation of immune responses, promotion of tissue repair, and
maintenance of bone mineralization [4,6,10,17]. In addition, adequate vitamin intake—
whether achieved through diet or supplementation—has been shown to reduce fatigue in
physically active individuals [17]. Conversely, inadequate vitamin supply is associated
with an increased risk of musculoskeletal injuries [18], heightened susceptibility to acute
illnesses [13,19], diminished sports performance [13], and delayed recovery following
strenuous exercise [20].

Given the evidence that adequate vitamin intake exerts a positive influence on both
exercise performance and post-exercise recovery, it is concerning that literature directly
addressing the effects of vitamin supplementation in relation to specific sports disciplines
remains scarce. Studies investigating the long-term effects of vitamin supplementation in
athletes are minimal. Furthermore, methodological shortcomings are frequently observed,
including reliance on retrospective and self-reported dietary assessments, as well as the
inclusion of small sample sizes, which collectively constrain the reliability and external
validity of findings [21-24].

Another significant limitation is that most existing reports lack practical applicability
for coaches, sports nutritionists, and practitioners. Few studies provide discipline-specific,
age-specific, or sex-specific supplementation guidelines, thereby limiting the translation
of research into actionable strategies [25-28]. This represents a critical gap in the evidence
base, as tailored recommendations are essential for optimizing supplementation protocols
to meet the diverse needs of athletes participating in various sports and training regimens.

In response to these deficiencies, this narrative review aims to synthesize the available
evidence from the past decade, with reference to earlier studies as necessary. The primary
objective is to formulate specific, evidence-based recommendations that guide supplemen-
tation strategies for physically active individuals, thereby contributing to enhanced athletic
performance, improved recovery, and overall health.

Finally, several limitations inherent to this review should be acknowledged. The
narrative synthesis approach, although appropriate in light of the considerable hetero-
geneity of study designs, populations, and measured outcomes, carries an inherent risk of
interpretation bias. Moreover, the inclusion of studies with varying methodological rigor
may impact the strength and reliability of the conclusions presented.

In interpreting the evidence, we weighted conclusions according to methodological
rigor—drawing stronger, more confident inferences from replicated randomized controlled
trials (e.g., vitamins D and C), while applying intentionally cautious, conservative wording
in sections where evidence is sparse, heterogeneous, or based primarily on mechanistic or
observational studies (e.g., vitamins A and K).
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2. Methods

Databases and Search Dates: We conducted structured searches in PubMed, ScienceDi-
rect, PEDro, and the Cochrane Library, covering the period from 2010 to 2024, supplemented
by earlier or later seminal works as necessary.

Search Strings: Search strings combined vitamin-specific and performance-related
terms using Boolean operators:

(“vitamin A” OR “retinol” OR “retinoic acid”) OR (“vitamin B” OR “thiamine” OR
“riboflavin” OR “niacin” OR “pyridoxine” OR “folate” OR “cobalamin”) OR (“vitamin C”
OR “ascorbic acid”) OR (“vitamin D” OR “25(0OH)D”) OR (“vitamin E” OR “tocopherol”)
OR (“vitamin K” OR “phylloquinone” OR “menaquinone”) AND (“athletes” OR “sports”
OR “exercise” OR “performance” OR “recovery” OR “injury prevention”).

Eligibility: The presented study utilized peer-reviewed human studies (including both
athlete and non-athlete populations) that reported vitamin status, supplementation, or
performance outcomes. Mechanistic and animal studies were considered only when directly
relevant to underlying physiological pathways. Inclusion: Human studies (RCTs, cohort,
cross-sectional, case—control) examining vitamin status, supplementation, or performance
outcomes in athletes or active adults. Exclusion: Case reports, non-peer-reviewed materials,
animal studies (except when elucidating physiological mechanisms), and studies combining
vitamins with multiple ergogenic aids where vitamin effects were indiscernible. Population
Handling: Data from non-athlete studies were included only when providing mechanistic
insights relevant to metabolic or physiological pathways in sport; these are clearly labeled
as extrapolations.

Athlete vs. Non-Athlete Data: When data derived from non-athlete populations were
discussed, these were clearly labeled as extrapolations to provide mechanistic or contextual
background, not direct evidence for athletes.

Quality Appraisal: As a narrative review, we did not apply formal systematic review
tools; however, we performed a structured quality appraisal of included studies using the
SANRA (Scale for the Assessment of Narrative Review Articles) criteria, focusing on the
justification of the article’s importance, the comprehensiveness of the literature search, the
level of evidence, and the balance of presentation.

Critical Appraisal: Study rigor and narrative balance were assessed using the SANRA
criteria, evaluating (1) justification of topic importance; (2) clarity of aims; (3) comprehen-
sive literature coverage; (4) transparent referencing; (5) scientific reasoning and balance;
and (6) explicit statement of limitations. Each study was qualitatively graded for method-
ological clarity, population relevance, and reproducibility of findings. Table 1 provides an
overview of the studies included in this review.

Table 1. Summary of study designs and evidence base per vitamin (2010-2024).

Vitamin RCTs Cohort{ Crf)ss- Case—Control Mech.a nistic/ Evidence Notes
Longitudinal = Sectional Experimental
Robust RCT base on oxidative stress,
Vitamin C 530 20 o5 -5 15 recovery, anq cortisol regulgtlf)n;
case—control links to tendon injury
and recovery.
The evidence is broad but
B-Complex heterogeneous, with case—control data
(B1-B12) 20-30 =15 >30 ~4 ~20 primarily focusing on deficiency

versus performance outcomes.
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Table 1. Cont.

Vitamin

RCTs

Cohort/ Cross- Mechanistic/

Case-Control Evidence Notes

Longitudinal  Sectional Experimental

Vitamin E

~20

Short-term antioxidant benefits;
case—control analyses suggest
impaired adaptation in individuals
using high doses.

~10 ~18 ~3 ~12

Vitamin A

<10

Sparse RCTs; case—control studies link
~6 ~15 ~2 ~10 deficiency with infection risk and
training absence.

Vitamin D

>40

Strongest evidence base; case—control
>25 >35 ~6 ~15 studies show deficiency strongly
associated with bone stress injuries.

Vitamin K

<10

Emerging field; case-control work
~5 ~12 ~2 ~8 limited to bone density and fracture
risk.

3. Water-Soluble Vitamins
Vitamin C

The relationship between vitamin C supplementation and athletic performance has
been a critical area of investigation and the subject of numerous literature reviews over the
last forty years [29-45].

As a potent antioxidant, vitamin C plays a crucial role in mitigating oxidative stress
that occurs during intense physical exercise [46]. Analysis of the recent literature revealed
that the role of vitamin C extends beyond reducing oxidative damage. It is also integral
in enhancing overall physical performance and recovery following strenuous activities. A
recent study has indicated that athletes who participate in aerobic activities and consume
vitamin C experience less muscle soreness and quickly return to baseline performance
following physical effort [17]. In high-intensity training regimens that increase free radical
production, supplementation with vitamin C can help support stronger training adapta-
tions [47]. Patlar et al. [48] in their study on the effects of vitamin C in mitigating oxidative
stress during rigorous training discovered that moderate-dose vitamin C supplementa-
tion (e.g., 300 mg/day) significantly prevented lipid peroxidation in athletes performing
exhaustive exercises.

It was also shown that vitamin C supplementation can significantly decrease mark-
ers of oxidative stress during and after exercise when administered orally in a dose of
300 mg/day [48] or when administered orally for 14 days, 4 times a day, in a 500 mg
dose [49]. Junaidi et al. [17] and Giinalan et al. [7] confirmed that vitamin C helps reduce
exercise-induced muscle damage.

Recent studies have confirmed that supplementation with vitamin C may also en-
hance the post-training recovery process in athletes by influencing both metabolic and
inflammatory responses [48-50]. Furthermore, in a controlled study involving basketball
players, decreased cortisol levels were observed in subjects supplemented with vitamin C
at doses ranging from 0.25 to 1.0 g per day [51]. By lowering cortisol levels, vitamin C may
improve subsequent performance during later training sessions, suggesting a direct benefit
for athletes looking to maintain high levels of performance over time [50].

While the benefits of vitamin C are well-documented in endurance sports [29,52,53], its
potential advantages also extend to other forms of athletic activity. For example, in combat
sports, the antioxidant properties of vitamin C have been linked to improved recovery from
muscle injuries and better overall training adaptations [54]. Chou et al. [50] demonstrated
that short-term high-dose vitamin C supplementation significantly reduced muscle damage
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and inflammatory responses in athletes participating in intense Taekwondo competitions.
These observations suggest that vitamin C supplementation may mitigate the severity
of muscle injuries and the associated inflammatory response, which, in consequence,
leads to improved recovery outcomes. A probable influence on tendinopathy recovery,
a phenomenon accounting for a substantial part of all sports injuries and occupational
disorders [55], has also been critically acclaimed in the study by Noriega-Gonzalez et al. [56]
following supplementation with vitamin C.

Nevertheless, the latest findings on the efficacy of vitamin C supplementation are still
debated. Some studies suggest that excessive antioxidant supplementation may hinder the
positive adaptations to training by disrupting signaling pathways that facilitate beneficial
cellular responses to oxidative stress [54,55]. Kim et al. [56] noted that while antioxidant
supplementation can aid recovery, it may interfere with the physiological adaptations
necessary for enhancing strength and endurance. It reinforces the recommendation by
Wilson-Barnes et al. [25] that athletes should aim to achieve adequate vitamin intake
through a balanced diet rather than solely through supplements.

While vitamin C can reduce oxidative damage [57], it may also dampen the body’s
natural over-compensation mechanisms that typically occur after strenuous exercise [44,58].
Thus, moderation and timing of vitamin C intake are paramount for athletes aiming to
maximize performance while reaping the benefits of this nutrient [43,50].

Furthermore, the form of vitamin C supplementation—i.e., through dietary sources or
as an isolated supplement—can influence its efficacy [59]. Because whole food sources of
vitamin C, such as fruits and vegetables, provide additional benefits derived from other
phytochemicals and micronutrients that may enhance absorption and utilization [60]. It is a
compelling rationale for athletes to focus on a well-rounded diet that includes rich sources
of vitamin C, along with adequate protein and carbohydrates necessary for recovery [44,58].

In conclusion, vitamin C supplementation holds promise in supporting athletic per-
formance, particularly by reducing muscle soreness and oxidative stress while enhancing
recovery. However, athletes must strike a careful balance in their approach to supplementa-
tion to avoid potential negative impacts on exercise adaptations as observed by Nikolaidis
et al. [61] and Shunchang et al. [7]. Future research should continue to explore optimal
dosing strategies, the timing of supplementation relative to training sessions, and the effects
of dietary sources of vitamin C on athletic performance outcomes. The benefits and risks of
vitamin C supplementation are compiled in Table 2.

Table 2. Benefits and risks of vitamin C supplementation. (The arrows indicate elicited physiological

response).
Benefits Risks
| Muscle soreness [62] J Mitochondrial adaptatlons in the case of
overdosing [63]
1 Lipid peroxidation (oxidative stress) [64] Gastrointestinal distress (nausea, cramps) [65]
J Cortisol levels (stress hormone) [66] T Risk of kidney stones (especially oxalate) [67]
T Recovery speed [68] 1 Copper and selenium absorption [69]

1 Immune response [70] Hemolysis in G6PD-deficient individuals [70]

T Iron absorption (problematic in
hemochromatosis) [70]
1 Collagen synthesis and tendon repair [70] Prooxidant activity with iron/copper [71]
1 Endogenous antioxidant enzyme signaling
[73]

J Inflammatory markers [70]

J Risk of illness during heavy training [72]

It is worth noting that since the body typically regulates vitamin C levels tightly, excret-
ing excess amounts through urine, doses greater than 2 g per day may result in side effects,
such as gastrointestinal disturbances (diarrhea, nausea, and abdominal cramps) [49]. Addi-
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tionally, there is evidence that excessive vitamin C supplementation could interfere with
the absorption of other nutrients and minerals, particularly copper and selenium, which
can lead to complications in overall health and athletic performance [51]. Furthermore,
individuals with certain health conditions, such as kidney disease, may be particularly
at risk, as high levels of vitamin C can lead to the formation of kidney stones, especially
oxalate stones, in susceptible individuals [54,74-76]. Individuals with glucose-6-phosphate
dehydrogenase (G6PD) deficiency may experience hemolysis when exposed to high doses
of vitamin C [77-80]. It was also demonstrated that ultra-high doses of vitamin C are
associated with hemolytic events [74,81]. Moreover, in individuals with hemochromatosis
or those with high iron stores, excessive vitamin C intake may exacerbate iron overload,
potentially leading to toxicity. This risk is particularly concerning for patients with genetic
predispositions to iron accumulation [81]. In the presence of transition metals like iron and
copper, vitamin C can act as a prooxidant. This dual role raises concerns about its safety in
high doses, as it may contribute to oxidative damage rather than prevent it [82].

Despite the abundance of data on vitamin C application in sports, the study suffers
from methodological limitations. Thus, (1) the heterogeneity of study designs, populations,
and outcome measures in vitamin C research presents significant challenges for evidence
synthesis. (2) Analysis of the literature revealed that many studies employ different
supplementation protocols, making direct comparisons difficult. (3) Additionally, the
definition of” athletic populations” varies widely, from recreational exercisers to elite
competitors, further complicating interpretation, and (4) the lack of standardized outcome
measures is particularly problematic.

Analysis of the literature allowed for elucidation of the targeted supplementation
protocol. Thus, the moderate-dose protocol (recommended for most athletes) encompasses
a dosage of 200-500 mg daily, divided into two doses, i.e., a morning dose of 200-300 mg
with breakfast and evening dose of 100-200 mg with dinner, with special consideration
given to avoiding taking vitamin C immediately before or after key training sessions [83].

4. B Vitamins

The B-vitamin complex includes eight water-soluble vitamins—B1 (thiamine),
B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), B6 (pyridoxine), B7 (biotin), B9 (fo-
late), and B12 (cobalamin). They are critical in sports and physical performance due to their
roles in energy production [84], red blood cell synthesis [85], neurological function [86], and
tissue repair [87]. Although each B vitamin has distinct physiological functions, they often
work together as coenzymes in key metabolic pathways that support athletic performance
and recovery [14,88-91].

It can be observed that thiamine (B1) is strongly linked to carbohydrate metabolism
and aerobic energy production, thereby reducing fatigue by activating pyruvate dehydro-
genase [88,92]. Riboflavin (B2) contributes to aerobic metabolism, reduces muscle pain, and
accelerates recovery, as supported by double-blinded trials [92,93]. Niacin (B3) supports the
formation of NAD/NADP coenzymes, which are essential for glycolysis and the citric acid
cycle, with emerging links to the modulation of oxidative stress [94,95]. Pantothenic acid
(B5), a precursor to coenzyme A, underpins fatty acid metabolism [96,97], while pyridoxine
(B6) may enhance immune response and muscular endurance [98]. Biotin (B7) functions in
carboxylation reactions essential for macronutrient metabolism [99], though evidence in
athletes is limited. Folate (B9) supports amino acid metabolism and regulates homocys-
teine levels, influencing cardiovascular health and inflammation [100,101]. Vitamin B12
facilitates red blood cell synthesis and oxygen transport, while also supporting cognitive
processing and reaction speed [88,102,103].
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A recent study found that supplementation with vitamin B1 (thiamine) is associated
with lower levels of pyruvate and lactic acid, which helps reduce fatigue during high-
intensity exercise [88]. It suggests that thiamine can enhance performance by improving
energy metabolism and delaying fatigue [104]. Because thiamine activates the pyruvate
dehydrogenase complex, boosting glucose-to-energy conversion, it may benefit athletes in
aerobic sports [105].

Its active form, thiamine pyrophosphate, plays a crucial role in carbohydrate
metabolism during exercise [104]. It supports the role of thiamine in boosting aerobic
metabolism and energy production [105]. A broader review supports the idea that ade-
quate vitamin intake enhances muscle function, recovery, and athletic output [4].

However, thiamine deficiency can impair metabolism and negatively impact perfor-
mance [106], leading to fatigue and reduced performance [107,108], particularly under
physical stress, such as in combat sports [106].

A double-blinded, placebo-controlled trial on the influence of vitamin B2 on sports
performance [94] suggested that riboflavin supplementation before and during prolonged
running may reduce muscle pain and soreness during and after exercise, as well as enhance
early functional recovery after the workout. This observation was complemented by a
randomized, placebo-controlled double-blinded trial conducted by Kent et al. [93], who
showed that the group consuming riboflavin had a significantly shorter recovery time after
a bout, 9.9 days versus 22.2 days in the placebo group (p < 0.05). It has also been shown
that riboflavin enhances aerobic power and recovery [107]. Athletes generally maintain
adequate B2 levels, likely due to higher dietary intake [108].

Vitamin B3, also known as niacin or nicotinic acid, plays several critical roles in athletic
performance by modulating energy metabolism and neurological function. Vitamin B3
(niacin) enhances athletic performance by modulating energy metabolism and neurological
function through the formation of coenzymes NAD and NADP, which are vital in glycolysis
and the citric acid cycle [88]. While some research links niacin to reduced oxidative stress
and improved muscle recovery, evidence in athletes remains under evaluation [94,95].
Ghazzawi et al. showed that adequate niacin may help sustain performance by maintaining
energy reserves and supporting cardiovascular health [109]. In high-stress environments,
it could also support neurotransmitter activity and mental stamina [110]. However, the
recent study shows that vitamins B1, B2, and B3 do not consistently produce ergogenic
effects [111].

Pantothenic acid (B5) is essential in energy metabolism [96], fatty acid synthesis [112],
and coenzyme production [113]. As a coenzyme A precursor, B5 plays a role in aerobic en-
ergy metabolism [97]. However, it does not improve aerobic performance [114]. Combined
with other B vitamins, it may support endurance and recovery; however, further studies
are needed [115].

Data on the applicability of B6 (pyridoxine) in sports is scarce. However, a recent
study showed that it may modulate the immune response and, when combined with other
B vitamins, improve agility and muscular endurance [98]. Manore et al. [116] showed that
women are prone to a decline in pyridoxine levels during periods of dieting and exercise.

Little is known about biotin (B7) in athletic contexts, but in general metabolism, it acts
as a CO, carrier in carboxylation reactions that are vital for the synthesis of fatty acids,
amino acids, and carbohydrates [99]. In animal models, B7 has been shown to improve
traits under oxidative stress [117].

Folate (B9) is crucial for amino acid metabolism [118]. Its deficiency elevates homo-
cysteine [100] and increases the risk of cardiovascular disease [119,120]. In athletes, it
affects endurance, making folate vital to training and peak performance [109]. It may also
lower C-reactive protein, reducing inflammation [101]. Studies have linked higher folate
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intake with improved performance and recovery [121,122], particularly in female elite
athletes [123]. It has been shown that vegetarian and vegan athletes are at risk of folate
deficiency [103,120].

The synthesis of red blood cells is a crucial process facilitated by vitamin B12, which
serves as a coenzyme in the conversion of homocysteine to methionine, a vital step in
DNA synthesis and cellular replication [102]. A deficiency in vitamin B12 can lead to
megaloblastic anemia, characterized by larger-than-normal red blood cells that are inef-
fective in transporting oxygen [124]. For athletes, this may lead to decreased endurance
and increased fatigue. Some studies indicate that a well-maintained level of vitamin B12 is
essential for preserving optimal endurance capabilities during exercise [109].

Vitamin B12 supports red blood cell formation by converting homocysteine to me-
thionine, a step required for DNA synthesis and cell replication [102]. Deficiency leads
to megaloblastic anemia, impairing oxygen transport and reducing endurance capabil-
ity [124]. Proper B12 levels help maintain stamina and recovery by supporting fatty acid
and amino acid metabolism [109]. Adequate B12 reduces lactate build-up during intense
training [4]. Vegetarians and vegans face a higher risk of B12 deficiency [105,124], necessi-
tating careful monitoring and potential supplementation [88]. Supplementation with B12
helps maintain” appropriate” levels, critical for sustaining metabolism, endurance, and
recovery during sports bouts [103]. B12 is also essential for cognition, aiding processing
speed and decision-making—crucial for competitive athletes [88,103]. Reduced vitamin
B12 levels could potentially lead to declines in mental performance, affecting reaction times
and decision-making skills—the latter being vital for competitive athletes, especially in
fast-paced sports [103].

A study by Lee et al. [88] found that 28 days of B-complex supplementation (including
B1, B2, B6, and B12) improved endurance and reduced fatigue without any adverse effects.
Nevertheless, other studies show that B1, B2, and B3 may not yield ergogenic benefits
unless thiamine derivatives are involved [111]. Thiamin, riboflavin, and B6 remain key to
energy metabolism, which is vital for athletes [125,126].

A study involving overweight and obese men found that B-complex supplementation
combined with sports improved physical activity and body composition, reducing fat and
increasing lean mass [114]. These findings suggest that targeted vitamin B supplementation,
combined with structured training, can improve fitness outcomes. However, vitamin B
supplementation is not necessary for athletes with balanced diets, and excessive intake
may offer no benefits and should be avoided [114,127]. Nevertheless, athletes with poor
diets may derive the most benefit from vitamin B complex supplementation [125]. The
summary of the recent findings is compiled in Table 3.

The literature on the relationship between B vitamins and metabolic pathways is illus-
trated in the figure in Section 5.2. It can be observed that thiamine (B1) plays a crucial role
in glycolysis and the TCA cycle through its active form, thiamine pyrophosphate, which ac-
tivates the pyruvate dehydrogenase complex, thereby enhancing glucose-to-energy conver-
sion [88,104,105]. Riboflavin [111] is central to aerobic energy metabolism via its coenzymes
FAD and FMN, which are integral to the TCA cycle and fatty acid (3-oxidation [92,107].
Niacin [111] contributes significantly to NAD/NADP formation, which is essential for redox
reactions in glycolysis, the TCA cycle, and oxidative phosphorylation [94,95]. Pantothenic
acid [96] is the precursor for coenzyme A, a fundamental cofactor in both fatty acid oxida-
tion and the TCA cycle [96,97]. Pyridoxine [4] participates indirectly in energy metabolism
by supporting amino acid transamination and gluconeogenesis [125,126]. Biotin [117] is
a cofactor for carboxylase enzymes, enabling key reactions in fatty acid synthesis and
gluconeogenesis [99]. Folate [118] has minimal direct involvement in core energy pathways
but is crucial for amino acid metabolism, indirectly supporting energy availability [100].
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Vitamin B12 is required for odd-chain fatty acid metabolism and methylmalonyl-CoA

conversion to succinyl-CoA, linking it to the TCA cycle [102].

Table 3. The relation between B vitamins, sports activity, and the risk of deficiency.

Vitamin Name Major Functions in the Sports Context Deficiency Risk in Athletes
Bl Thiamine Carbohydrate ?;E?E:lrleszltcet?s;gy production, Combat athletes, high-intensity trainers [125]
B2 Riboflavin Aerobic metabohsrnl,‘er(r:l(l)l‘fi; pain reduction, and Dieting female athletes [116]
B3 Niacin NAD/ NADP. coenzyme production, energy Endurance and stressed athletes [128]
metabolism, and muscle recovery
B5 Pantothenic Acid Coenzyme A precursor, fatty acid metabolism Limited evidence, needs more research [129]
B6 Pyridoxine [mmune support,nriltlsigi?;sndurance, energy Athletes with high metabolic turnover [130]
B7 Biotin Carboxylatlor} in metabolism Unknown in athletes [131]
(fatty acids, carbs)
Amino acid metabolism, homocysteine control . .
. . . L 3
B9 Folate cardiovascular health, and inflammation reduction Vegans/vegetarians, female elite athletes [132]
B12 Cobalamin Red blood cell production, D.N A synthe;s1s, oxygen Vegans/vegetarians, endurance athletes [125]
transport, and cognitive function
Analysis of the current literature on cross-correlations between B vitamins supple-
mentation and sports activities unfolded the limitations including: (1) heterogeneity in
supplementation protocols and dosages, (2) variation in study populations and athletic
disciplines, and (3) limited long-term safety data for high-dose supplementation and the
evidence gaps on (1) optimal dosing for specific sports and training phases, (2) individual
variation in B vitamin requirements, (3) interaction effects between different B vitamins,
and (4) long-term performance and health outcomes.
Based on successful intervention studies, effective dosing is provided in Table 4:
Table 4. Effective dosing of B vitamins.
. . . Performance .
Vitamin Athlete Evidence and Typical Studied Duration Studied Domain Biomarkers Sport
Performance Findings Dose in Athletes R Reported Applications
eported
Mechanistic rqle in 'ca{’bohyplrate Endurance/fatigue
decarboxylation; limited direct A
; R . 28-90 days reduction in Increased blood Useful when
athlete RCT evidence suggesting 20mg/dayina L . .
- . . . studied in complex bioavailable B1 carbohydrate
- benefit when included in professional . .
B1 (thiamine) e complex formulations; after complex metabolism or
multivitamin/B-complex athlete B-complex ¢ lati inele-vitami 1 : defici .
formulations that reduced fatigue trial [133] ormulations single-vitamin supp. ementation eficiency is
. < o [88,133] athlete RCTs in athletes [133] suspected
symptoms in athletes and active lacking [111]
adults [88,111,133] g
Es;?;gﬂi?iﬁ?é lslngocr?{;i’lcer; No consistent Increased serum Status monitoring
nsistent positiv g t from 15 mg/day in the athlete bioavailable B2 recommended;
B2 (riboflavin) cons Siseolatpe(():lsrib(fﬂeavei:; © athlete B-complex As above [133] performance after complex isolated
P e trial [133] gains reported supplementation supplementation
supplementation in exercise trials 11 133 I died
[111] [111] [133] rarely studie:
No
Central to NAD/NADP No consistent at}ll)l'e te—spﬁmﬁc hCautlonl— .
metabolism; high pharmacological ~ 30 mg/day in one improvements in | bomar ert P grrgaco (ﬁglc
B3 (niacin) niacin alters metabolism, but the B-complex athlete As above [133] measured UMPIOVEMENts ruacin doses have
, L attributable solely metabolic effects
athlete’s benefit is unclear and protocol [133] performance from to niacin wer in nonathlet
evidence is inconsistent [111,134] athlete data [111] O macin were nnonath’ete
reported in the literature [111]
corpus
Required for CoA synthesis; no No
B5 (pantothenic athlete RCT evidence for 10 mg/day in the ~ Insufficient ~ athlete-specific
acid) single-vitamin ergogenic effectin ~ complex trial [133] evidence guidance
corpus [111] available
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Table 4. Cont.
. . . Performance .
Vitamin Athlete Ev1der.1ce ".md Typlc'al Studied Duration Studied Domain Biomarkers SPort.
Performance Findings Dose in Athletes R Reported Applications
eported
Involved in amino acid Fatigue reduction,
metabolism; included in B-complex 15 mg pyridoxal-5- . potentially Increased serum Consider where
B6 trials that reduced perceived phosphate/day in 281;901 d:z;si;? recovery when B6 after complex deficiency or
(pyridoxine/P5P) fatigue and metabolic markers athlete complex co [ggpfl 33] s combined with supplementation heavy protein
when given with other B vitamins [133] T other B vitamins [133] turnover exists
[88,133] [88],
Mechanistic role in carboxylases; 1000 g /day in
- no athlete-specific RCT evidence Hg/aay Insulfficient Insulfficient
B7 (biotin) . athlete complex - - -
for performance effects in corpus evidence athlete data
[111] [133]
Important for haematological Increased folate
adaptation and cell synthesis; No direct . Particularly
. . biomarkers after
folate is included in 400 pug performance supplementation relevant for
B9 (folate) multimicronutrient interventions 5-MTHEF/day in B endpoints PP in female athletes
olate for athletes and general athlete complex improved in .. . and
T oo older/ multlmlcronutrleﬁt .
populations; specific performance [133] athletes when not . aematological
. . . . trials (nonathlete) .
gains unclear unless deficiency deficient [28,135] [136] adaptation [28]
present [28,135] N
Required for erythropoiesis and Fatigue and Holotranscobalamin Consider if
one-carbon metabolism; included 1000 pg methyl- subjective and serum B12 vegetarian/low-
. in athlete B-complex trials that cobalamin/day in recovery increase in multi- animal-product
B12 (cobalamin) . . - . . . .
improved fatigue symptoms when athlete complex improved in micronutrient athletes or
baseline insufficiency was likely [133] B-complex trials studies suspected
[88,133] [133] (non-athlete) [136] deficiency

Notes: Where the table lists direct athlete trial doses and outcomes, those data derive from a professional athlete
pre-post B-complex study and a randomized trial of a B-complex product in healthy active adults [88,133], and
from narrative reviews on athlete evidence and mechanisms [111]. For most individual B vitamins, athlete-specific
randomized trial evidence of single-vitamin ergogenic effects is lacking [111]. Fat-soluble vitamins.

5. Vitamin E

Among the early studies on the effect of vitamin E supplementation on physiological
parameters associated with physical training was the report by Helgheim et al. [137]. In
a study involving 26 trained and untrained individuals aged 19-24, the levels of serum
enzymes were assessed after heavy exercise in response to d-a-tocopherol supplementation.
After a six-week medication period (300 mg daily; 450 UI), the serum concentration of
d-o-tocopherol increased from 12.7 to 19.6 mg/mL in the vitamin E group, while in the
placebo group, the value remained unchanged. Participants of the study were subjected
to muscular work involving either trained or untrained muscle groups. Serum levels of
creatine kinase (CK), aspartate aminotransferase (ASAT), and lactate dehydrogenase (LD)
were measured before exercise and at various time points post-exercise. In individuals
exercising with trained muscles, serum enzyme levels showed only minor, statistically
insignificant elevations, with no differences observed between the vitamin E and placebo

Muscle Membrane
Protection

groups (Figure 1).
Panel A Panel B
Oxidative Stress @
Recovery Antioxidant Action
1
Training Adaptation | CK/MDA 1 Mitochondrial
Biogenesis
Inflammantion
Low | High
<4001U >8001U

Figure 1. Dose-response and function outcomes of vitamin E supplementation in athletes [43,52,138-140].
Panel (A): Cross-correlations between the levels of vitamin E and the levels of oxidative stress, muscular
recovery, and training adaptation. Panel (B): Antioxidant action of vitamin E and its influence on
inflammation processes and mitochondrial biogenesis.
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In contrast, exercise involving primarily untrained muscles led to a significant increase
in serum CK activity, alongside notable elevations in ASAT and LD [141-143]. Again, no
differences were detected between the vitamin E and placebo groups [144-146]. Isoenzyme
analysis revealed that the rise in CK was attributable to the CK-MM isoform, suggesting
that the primary source of enzyme release was striated skeletal muscle [147,148]. These
findings indicate that vitamin E supplementation does not influence post-exercise increases
in serum enzyme concentrations [144].

Recent research has recognized vitamin E as a potent antioxidant, playing an essential
role in protecting cellular membranes from oxidative damage during intense physical
activity [149-151]. Research has shown that supplementation with vitamin E can reduce
exercise-induced oxidative stress markers, such as malondialdehyde and creatine kinase
levels, aiding in muscle recovery [152,153]. Specifically, vitamin E has been associated with
reduced muscle damage and inflammation in response to repeated strenuous exercises,
underscoring its importance for athletes [154,155].

Studies suggest that athletes, particularly those engaged in endurance activities, may
have higher demands for antioxidants due to the increased production of reactive oxygen
species (ROS) during exercise [145,156]. High-dose vitamin E supplementation has been
shown to have protective effects against muscle injury and inflammatory responses in
athletes undergoing rigorous training regimens [157-159]. Furthermore, a study on elite
Indian cyclists supported the hypothesis that vitamin E could decrease oxidative markers
resulting from endurance training [159].

Conversely, recent literature has indicated that high doses of antioxidant vitamins,
including vitamin E, may blunt the physiological adaptations to endurance training, such
as mitochondrial biogenesis and protein synthesis essential for performance improve-
ment [139,160]. Notably, studies have reported that supplementation with antioxidants
might impair the beneficial adaptations that typically occur with regular exercise, leading
to a paradoxical effect that could negate potential endurance benefits [63,161]. It suggests
that while vitamin E supplementation may enhance recovery and reduce acute muscle
damage, it might concurrently interfere with long-term adaptations necessary for sustained
athletic improvement.

Moreover, the findings of the last decade confirm the role of vitamin E in mitigating
oxidative stress induced by various forms of physical exertion, particularly among athletes.
The recent studies observed that oxidative stress arises in response to the production of
reactive oxygen species (ROS) during intense exercise, which can lead to muscle damage
and impaired athletic performance if not adequately managed [43,162]. In a clinical trial,
egg supplementation enriched with n-3 polyunsaturated fatty acids and antioxidants,
including vitamin E, was shown to enhance microvascular adaptation and reduce oxidative
stress during strenuous physical exercise in male athletes [163]. It suggests that maintaining
higher levels of vitamin E may be beneficial in preserving muscle integrity during high-
intensity workouts [164]. Furthermore, evidence from studies demonstrates that vitamin E,
particularly in combination with vitamin C, can diminish markers of muscle damage, such
as creatine kinase levels, following intense exercise [165,166].

However, findings concerning the efficacy of vitamin E supplementation are not without
controversy (Table 5). Some studies have reported that antioxidant supplementation, including
vitamin E, may hinder muscular adaptations from training. For example, one study observed
that vitamin E had detrimental effects on the proteome response to training, suggesting that
excessive antioxidant intake could blunt the positive adaptations expected from endurance
training [167]. It indicates a complex interaction where the timing and dosage of vitamin E
supplementation are crucial; while it might protect against oxidative damage, it could also
interfere with the body’s natural adaptive processes when overconsumed.
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Moreover, the role of vitamin E in sports should also consider dietary sources and the
overall nutritional strategy employed by athletes [16,168,169]. While supplementation can
be beneficial, a balanced diet rich in antioxidants, including natural sources of vitamin E,
may provide a more effective means of managing oxidative stress [170,171]. Several studies
emphasize the importance of athletes meeting their overall nutritional needs to optimize
their performance [109,172].

Table 5. The summary of key findings on vitamin E and athletic performance. (The arrows indicate

elicited physiological response).

Study/Year Participants Intervention Main Outcomes Conclusion
1 serum vitamin E in
supplement group; no N .
. 26 trained & untrained 300 mg/day effect on CK, ASAT, LD Vitamin E (?hd not alter
Helgheim et al., 1979 [137] d-«-tocopherol for 6 . post-exercise enzyme
men, 19-24 years of age changes post-exercise .
weeks b . increases
(trained / untrained
muscles)
Sureda et al., 2008; Bojanié¢ Various athlete eroups Vitamin E | oxidative stress markers r(s)ltg%zﬁs d?lr;tilr?XIii?erzlr:se
etal., 2013 [152,153] group supplementation (MDA, CK), 1 recovery P exerciseg
Chou et alf.’ 2018; de la Athletes under repeated Vitamin E | muscle damage & -
Puente Yagiie et al., 2020 . 1 . infl . Beneficial for recovery
[154,155] strenuous exercise supplementation inflammation

Yusni et al., 2019; Badau
et al., 2018; Chhavi et al.,
2009 [157-159]

| oxidative markers, |
muscle injury

Potential protective role in

Endurance athletes ..
endurance training

High-dose vitamin E

Higgins et al., 2020;
Rothschild et al., 2019
[139,160]

J mitochondrial

High-dose antioxidants . . .
biogenesis, | protein

(including vitamin E)

High doses may blunt

Endurance athletes long-term adaptations

Kolar et al., 2023 [163]

synthesis
Egg supplementation 1 microvascular . -,
Male athletes enriched with n-3 PUFA + adaptation, | oxidative The combm‘e d nutr}tlon
s o approach is effective
antioxidants (vitamin E) stress

Martinez-Ferran et al.,
2022; Koohkan et al., 2023

Athletes in high-intensity

Synergistic antioxidant

Vitamin E + vitamin C 1 CK, | muscle damage

[165,166] training effects
W . Negative impact on the . .
yckelsma et al., 2025 Vitamin E Potential interference with
Athletes . proteome response to -
[167] supplementation training adaptation
Dobrowolski et al., 2024; . A balanced diet with Food sources preferred
. General athletic . . . L. .
Ghazzawi et al., 2023 lati Dietary vitamin E antioxidants supports over high-dose
[109,172] popuiation performance supplements

The limitations of the reviewed study encompass the following: (1) heterogeneity in
study designs and populations limited meta-analytic approaches, (2) most studies had
relatively short follow-up periods, (3) baseline vitamin E status was rarely assessed, and
(4) publication bias may favor studies showing positive results.

Literature analysis revealed the following dosage and timing considerations [114,139,154,173].
Thus, studies employed varying dosages ranging from 100 to 1000 IU daily: (1) 100400 IU
daily: most commonly studied range with minimal benefits; (2) 400-800 IU daily: some
positive effects in combination studies; and (3) <800 IU daily: limited studies with no
additional benefits.

Although the literature analysis allows for the establishment of specific doses of
vitamins C and E, the recent consensus in sports nutrition emphasizes caution with an-
tioxidant supplementation, as excessive or peri-exercise intake of these vitamins may
attenuate key adaptive responses to training, including mitochondrial biogenesis and re-
dox signaling [63,174-177]. Therefore, rather than fixed dosing protocols, a conditional
decision pathway is proposed: (a) confirm deficiency or clinical indication through di-
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etary assessment or biochemical testing before supplementation; (b) consider the training
phase, avoiding antioxidant supplementation during adaptation-focused blocks (e.g., build
or overload) and restricting use to recovery or taper phases if needed; (c) prioritize a
food-first strategy, emphasizing antioxidant-rich fruits, vegetables, and whole foods; and
(d) if supplementation is deemed necessary, avoid high-dose or peri-exercise administra-
tion (e.g., >500 mg vitamin C or >400 IU vitamin E). These recommendations constitute
conditional guidance with low certainty, reflecting heterogeneity in existing evidence and
the absence of athlete-specific randomized controlled trials [156,176,178-183]. This individ-
ualized, phase-specific approach better aligns with current evidence linking antioxidant
balance—not maximal intake—to optimal training adaptation and recovery.

5.1. Vitamin A

The role of vitamin A in sports performance has gained increased attention due to
its multifaceted effects on metabolism, immune function, and overall health (Figure 2).
Vitamin A, which includes retinol, is essential for various physiological functions critical to
athletic performance. Generally, it influences energy metabolism, reduces oxidative stress,
enhances immune function, and promotes recovery.

Mechanistic Pathways of Vitamin A
in Athletic Performance

Lipid Metabolism >

4 Synergy with C —Z'
3 4 Endurance

Glucose Metabolism

+ GLUT4 — @clnlhie €.

+ PEPCK Retinoic acid |

+ GGPC 1 Recovery
Mitochondrial _] @
Biogenesis/Function
4+ PGC-1a f ¥ Infections
4+ NRF1
4+ UCP2/3 Deficiency Prevalen

Indoor sports: 40-70%
Outdoor sports: 30-50%

Figure 2. Literature-derived mechanistic pathways of vitamin A as a function of sports activity [184-187].

Vitamin A is primarily known for its role in vision and epithelial integrity, where
it functions as a modulator of gene expression through its active metabolite, retinoic
acid [188]. Altogether, vitamin A affects muscle repair, mitochondrial biogenesis, and
protein synthesis [189]. Moreover, its immunomodulatory effects support the immune
system under the stress of intense physical activity, potentially reducing susceptibility to
infections in athletes [190,191].

Vitamin A also plays a noteworthy role in the metabolism of macronutrients. The
active metabolite of vitamin A, all-trans-retinoic acid (ATRA), acts as a ligand for nuclear
receptors—retinoid X receptors (RXRs) and retinoic acid receptors (RARs), and regulates
the transcription of a variety of genes involved in metabolic pathways [192-194]. These
receptors are known to form heterodimers with other nuclear receptors such as PPARs
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(peroxisome proliferator-activated receptors) and thyroid hormone receptors, which are
directly involved in lipid oxidation, glucose homeostasis, and mitochondrial function [195].

In lipid metabolism, retinoic acid enhances fatty acid oxidation and suppresses lipoge-
nesis in the liver and adipose tissue by controlling the expression of genes such as CPT1
(carnitine palmitoyltransferase 1) and SREBP-1c [192].

In carbohydrate metabolism, vitamin A status influences insulin sensitivity and glu-
cose transport; deficiencies have been linked to impaired gluconeogenesis and dysregulated
blood glucose levels [196]. Additionally, vitamin A plays a role in protein metabolism
through its effects on cellular differentiation and muscle protein synthesis, partly by inter-
acting with growth-related signaling pathways [197].

During physical exercise, several metabolic pathways that utilize micronutrients,
including vitamin A, are activated, facilitating efficient energy production [198-200].

Since the body’s demand for ATP increases substantially, requiring enhanced activity of
metabolic pathways such as glycolysis, 3-oxidation, the tricarboxylic acid (TCA) cycle, and
oxidative phosphorylation, vitamin A contributes to these processes through its regulatory
effects on gene expression and its antioxidant and immunomodulatory properties [84,201].

Vitamin A also has profound effects on mitochondrial function and biogenesis. It up-
regulates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1c),
a master regulator of mitochondrial biogenesis, either directly or through interactions with
estrogen-related receptors (ERR«) and PPARS [189]. Additionally, it stimulates the expres-
sion of uncoupling proteins (UCP2, UCP3) and nuclear respiratory factors (NRF1, NRF2),
contributing to enhanced mitochondrial oxidative capacity and energy efficiency [194].

In the regulation of glucose metabolism, vitamin A influences both glucose uptake
and hepatic glucose production [202-205]. It increases the expression of GLUT4 (SLC2A4)
in skeletal muscle and adipose tissue, thereby improving insulin sensitivity and peripheral
glucose uptake [206]. Simultaneously, it suppresses gluconeogenic enzymes such as glucose-
6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase (PEPCK), reducing hepatic
glucose output [193]. Furthermore, vitamin A induces pyruvate dehydrogenase kinase 4
(PDK4), which shifts the substrate preference towards fatty acids and away from glucose
oxidation, promoting metabolic flexibility during fasting or energy-demanding states [173].

These synergistic effects are crucial during endurance and resistance exercises, where
efficient substrate utilization is essential for maintaining performance. Moreover, retinoic
acid enhances mitochondrial biogenesis and fatty acid oxidation via its interaction with
nuclear receptors such as PPARs and RXRs, which coordinate the transcription of genes
like PGC-1«, a master regulator of mitochondrial metabolism [207].

Since exercise also increases the generation of reactive oxygen species (ROS), vita-
min A stabilizes cell membranes and interacts with antioxidants, such as vitamins C and
E, to reduce oxidative stress [190]. Furthermore, retinol, as an antioxidant, can coun-
teract the oxidative damage caused by free radicals appearing during stressful physical
exertion [208,209]. There is some evidence suggesting that adequate vitamin A levels
may contribute to improved recovery and performance outcomes [122], but more targeted
research is necessary to confirm these links. In summary, this antioxidant defense is crucial
for protecting mitochondria and muscle cells from exercise-induced damage and fatigue.

A recent study revealed that athletes, particularly those engaging in high-intensity
training, should ensure their diet includes sufficient vitamin A intake to meet the elevated
metabolic demands imposed by their training regimens [13,210]. Insufficient vitamin A
may lead to impaired energy metabolism, which can impact an athlete’s endurance and
performance capabilities [109,153].

The role of vitamin A in immune function is equally critical for athletes. Mecha-
nistic and animal studies have demonstrated that a weakened immune system can lead
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to increased susceptibility to illnesses, resulting in frequent absences from training and
competition [28,94,211]. Research indicates that higher intakes of vitamin A contribute to
enhanced immune response, particularly in athletes subjected to rigorous training regimens
that may stress their immune systems [109]. Adequate vitamin A levels can help prevent
infections and illnesses, allowing athletes to maintain consistent training schedules and
ultimately enhance their performance.

Furthermore, vitamin A influences physiological functions related to muscle recovery
and post-exercise adaptation [212]. The need for athletes to consume a well-rounded diet
sufficient in all essential micronutrients, including vitamin A, to ensure optimal muscle
recovery was recently confirmed [4,109]. Moreover, some studies have suggested that
athletes meeting their recommended vitamin A intake may exhibit better recovery profiles,
which is crucial for training adaptations and improved performance across competitive
events [208,213]. The summary of all the above-mentioned findings is provided in Table 6.

Table 6. Relationships between function, mechanisms, and impact on athletic performance relating to
supplementation with vitamin A. (The arrows indicate elicited physiological response).

Function Mechanism Impact on Athletes
Lipid metabolism [210,214,215] 1 CPT1, | SREBP-1c 1 Fat utilization
Glucose metabolism [216-218] 1 GLUTY, | PEPCK, | G6PC 1 Insulin sensitivity, | blood glucose
Mitochondrial function [219,220] 1 PGC-1«, NRF1, UCP2/3 1 Energy efficiency, | fatigue
Antioxidant defense [221-223] synergy with vitamins: C/E, | ROS J Oxidative stress, 1 recovery
Immune modulation [224-226] 1 T-cell response, 1 barrier function 1 Infections, 1 training consistency
Muscle repair & recovery [185,227] 1 Protein synthesis, | inflammation T Recovery, 1 performance

The findings of the last 10 years on the subject revealed that vitamin A supplementation
influences various physiological parameters among handball players, impacting oxidative
balance, which may enhance athletic performance [158]. This finding aligns with other
research highlighting that micronutrients, including vitamin A, are integral to recovery
and athletic efficacy due to their roles in metabolic pathways and cellular functions critical
during physical stress [109]. Notably, athletes undergoing intense training often experience
increased oxidative stress; therefore, antioxidants, such as vitamin A, can mitigate these
effects and aid recovery [4].

Furthermore, the importance of adequate micronutrient intake, including vitamin A,
in athletes’ diets cannot be overstated. Nutritional deficiencies in elite athletes have been
documented, with studies indicating that many athletes do not meet the recommended
intakes of essential vitamins, including vitamin A [228,229]. This deficiency may adversely
affect performance, recovery, and immune response, underscoring the need for tailored
dietary strategies to meet the heightened needs of active individuals [213]. It is essential
to ensure diets are balanced and that supplementation is considered where dietary intake
may be insufficient.

Additionally, Chen and Liu [228] discuss how vitamins and minerals can influence
the performance capabilities of athletes engaged in various sports, emphasizing that main-
taining adequate micronutrient intake is crucial for optimal physiological functioning and
performance [230]. A systematic review by Cruz et al. supports this view, indicating
that training adaptations necessitate increased micronutrient consumption for adequate
metabolic support [231].

Incorporating vitamin A into nutritional strategies for athletes could be a proactive
measure, not only for performance enhancement but also for optimizing recovery and
ensuring long-term health. This perspective is supported by the increasing recognition
of personalized nutrition approaches in athletic preparation, which advocate for individ-
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ual dietary assessments to meet specific nutrient needs based on training intensity and
volume [232].

The evidence base for vitamin A suffers from several critical limitations: (1) the
minimal number of controlled intervention studies specifically examining Vitamin A sup-
plementation in athletes, (2) inconsistent dosing protocols and outcome measures across
studies, (3) a lack of sport-specific research examining performance outcomes, (4) the ab-
sence of studies examining bone health outcomes despite Vitamin A’s known role in bone
metabolism, and (5) limited investigation of muscle function parameters. Furthermore,
current research fails to address key questions regarding optimal dosing, timing, sport-
specific applications, and long-term safety considerations for Vitamin A supplementation
in athletic populations.

Moreover, the evidence for the effects of Vitamin A supplementation on athletic perfor-
mance is minimal and contradictory. While some research suggests potential antioxidant
benefits, other studies indicate possible adverse effects. A concerning finding from animal
research showed that Vitamin A supplementation (2000 IU/kg) in rats subjected to aerobic
exercise actually enhanced oxidative stress in lung tissues and impaired exercise-induced
adaptations of antioxidant enzymes [233]. It suggests that high-dose supplementation may
interfere with beneficial training adaptations.

5.2. Vitamin D

The application of vitamin D in the field of sports medicine has garnered attention in
recent years, particularly in relation to athletic performance, musculoskeletal health, and
injury prevention. Vitamin D is essential for various physiological functions, including
muscle function [234] and bone metabolism [235], which are crucial for optimal athletic
performance [155]. Current research highlights the benefits of vitamin D supplementation
for athletes, leading to strategies that aim to enhance their overall health and performance
(Figure 3).

w X ; Prevalence
_O_ —  Skin Indoor sports:
e Liver " | 40-70% deficiency

Skin Outdoor:

Bone Health " y 30-50% deficiency
t Calcium absorption — Vitamin D
+ BMD ,Calcitriol

Muscle Function l Immune Optimal serum
[ ) Modulation range

+ Strength «
+ Recuperati0|¢ llm 4 Increuse
Muscle Function ~ Infections

Figure 3. The role of vitamin D in musculoskeletal performance and injury prevention [12,45,236-241].

Current evidence suggests that vitamin D supplementation in athletes has mixed
effects on performance, with some benefits for aerobic capacity and anaerobic power, but a
limited impact on muscle strength. Deficiency is prevalent (40-70% of athletes), particularly
in winter and indoor sports, with optimal dosing protocols still unclear and safety concerns
minimal at recommended doses [43,45,236,240].

Thus, it has been shown that due to limited sun exposure, particularly in indoor sports
and during winter months, athletes obtain suboptimal levels of vitamin D [242-244]. This
insufficiency is concerning, as vitamin D is integral to calcium absorption, which is essential
for maintaining bone density and preventing stress fractures—a common injury among
athletes [245,246]. Supplementation has been recommended as a means to normalize serum
vitamin D levels, with studies suggesting that such interferences can lead to improvements

https://doi.org/10.3390/nu18020213


https://doi.org/10.3390/nu18020213

Nutrients 2026, 18,213

17 of 33

in musculoskeletal health and performance metrics [241,245]. Indoor sports (gymnastics,
swimming, basketball) show the highest deficiency rates, while outdoor sports demonstrate
lower but still significant deficiency rates (30-50%) [247].

Systematic reviews highlight the positive impact of vitamin D supplementation on
lower-body muscle strength, suggesting that athletes may experience gains in power and
endurance following supplementation [236,241,248]. Additionally, vitamin D is thought to
aid muscle recovery after exercise-induced damage, underscoring its role in not only injury
prevention but also recovery processes [249,250]. It has been documented that athletes with
adequate intake of calcium and vitamin D have a reduced risk of musculoskeletal issues
and exhibit better recovery from intensive training sessions [251,252].

However, meta-analysis of 11 randomized controlled trials involving 436 athletes
found no statistically significant effect of vitamin D supplementation on maximum strength
and power for baseline serum 25(OH)D concentrations of <75 nmol/L [253].

These studies complement the findings of Frank et al. [254,255], who demonstrated
that athletes with vitamin D deficiency exhibit higher rates of musculoskeletal injuries,
with stress fractures being the specific injury type most commonly associated with defi-
ciency. Moreover, recovery time from muscle strains was prolonged in vitamin D-deficient
athletes [250,256].

Deficiencies in vitamin D have been associated with an increased risk of injuries,
such as stress fractures and muscle strains, particularly in high-impact and endurance
sports [245,257]. Studies focusing on collegiate athletes have shown that those with ade-
quate vitamin D levels report fewer injuries and enhanced overall physical performance,
suggesting a protective effect attributed to this micronutrient [244,258]. Therefore, focusing
on vitamin D sufficiency may be a crucial aspect of injury prevention strategies in sports
medicine [246,259]. It has also been observed that specific injury types associated with
vitamin D deficiency include stress fractures and muscle strains, as well as prolonged
recovery times from injuries [255].

Research suggests that adequate levels of vitamin D can improve muscular strength
and functional performance. For example, a systematic review highlights the positive im-
pact of vitamin D supplementation on lower-body muscle strength, suggesting that athletes
may experience gains in power and endurance following supplementation [236,241,248].
Additionally, vitamin D is thought to aid muscle recovery after exercise-induced damage,
underscoring its role in not only injury prevention but also recovery processes [249,250].
Moreover, an updated meta-analysis of 10 RCTs (encompassing 318 athletes) demonstrated
significant increases in quadriceps contraction strength (SMD 0.57, 95% CI: 0.04-1.11,
p =0.04) [236].

Some studies suggest potential benefits for aerobic capacity and anaerobic power,
particularly in vitamin D-deficient athletes [260], and there is limited evidence that suggests
potential improvements in peak power output, with effects potentially more pronounced
in explosive power activities [57]

An analysis of the recent literature unfolded cross-correlations between vitamin D
supplementation and bone mineral density (BMD) in athletes. Thus, one study demon-
strated significant improvements in bone mineral density (BMD) compared to the control
group (p = 0.02) [252]. However, the other, performed on Singaporean athletes with suffi-
cient vitamin D levels, showed significantly higher BMD compared to deficient athletes
(p=0.01) [22]

Nutritional strategies incorporating vitamin D should consider its interaction with
other essential components, such as calcium and magnesium, both of which are crucial
for bone health [245]. Consequently, dietary management strategies focusing on these
nutrients, either through natural sources or supplements, are recommended in conjunction
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with routine vitamin D supplementation. However, when considering vitamin D sup-
plementation, geographical latitude should also be taken into account, as it significantly
influences the prevalence of deficiency [25].

Currently observed limitations of the study on vitamin D supplementation in sports
include: (1) mixed evidence for performance enhancement and (2) baseline status as a
critical determinant [45,237,243,261,262].

Target serum levels encompass the following values: optimal range for athletes:
75-125nmol/L (30-50 ng/mL), deficient: <50 nmol/L (<20 ng/mL), insufficient: 50-75 nmol/L
(20-30 ng/mL) and sufficient: >75 nmol/L (>30 ng/mL) [240,249,263,264]. The key findings
on vitamin D application in sport are compiled in Table 7.

Table 7. Key findings on cross-correlations between vitamin D and sports application.

Aspect Key Findings References
40-70% of athletes, higher in
Prevalence of deficiency indoor sports and winter; [242-244,247]

30-50% even in outdoor sports

Muscle function, bone
metabolism, calcium
absorption, and immune
modulation

Functions [155,234,235]

Mixed results; possible
benefits for aerobic capacity,
Effects on performance anaerobic power; limited [74,236,248,260]
effect on muscle strength
unless deficient

Improves bone mineral

Effects on musculoskeletal density, reduces risk of stress [132,246,252,257]
health fractures, aids recovery from
injury
May reduce recovery time
Recovery post-injury and [249,250,255]

exercise-induced muscle
damage

Recommended in deficiency;
optimal range 75-125 nmol/L;
Supplementation safe at recommended doses; [25,246,251,265]
consider calcium and
magnesium co-intake

Mixed performance outcomes;
Limitations of evidence baseline vitamin D status [236,253]
critical for effect

While vitamin D supplementation shows limited evidence for direct performance
enhancement in athletes with adequate vitamin D status, it provides clear benefits for
injury prevention and bone health maintenance, particularly in the 40-70% of athletes
who are deficient, making baseline 25(OH)D concentration the critical effect-modifier that
determines supplementation outcomes.

5.3. Vitamin K

Vitamin K supplementation in sports nutrition represents an emerging but understud-
ied area of research. While vitamin K is well-established for its roles in blood coagulation
and bone metabolism, its potential applications in athletic performance and recovery
remain largely unexplored [266].
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Vitamin K plays a crucial role in bone metabolism, primarily through the carboxylation
of osteocalcin, a protein that is closely linked to bone strength and mineralization [267].
This relationship is particularly relevant for female athletes, as vitamin K deficiency can
lead to lower bone mineral density and an increased risk of fractures [268,269]. Ishizu
etal. [269] noted that dietary education to improve vitamin K and calcium intake is essential
for young female athletes to maintain bone health, emphasizing the significant role these
nutrients play in mitigating the risk of osteoporosis later in life. Furthermore, Yan et al. [88]
indicated that dietary vitamin K can reduce systemic inflammation by lowering levels
of pro-inflammatory cytokines, which can be detrimental to athletic performance and
overall health.

Besides its role in bone health, vitamin K may also play a role in muscle function
(Figure 4). Research by Alonso et al. [268] suggests that higher vitamin K levels are
associated with improved skeletal muscle function and might enhance muscle recovery
following exercise. However, it is essential to note that while observational studies suggest
these associations, interventional studies on vitamin K supplementation have shown
conflicting results regarding improvements in muscle strength [56].

Panel A Panel B

Muscle
Function
@ Cardiovascular
Health
Bone Calcification J
Health Inhibition
Immune * «— Tendon
U Inflammation Health

L

Figure 4. Vitamin K’s emerging roles in athletic health [19,270-274].

Vitamin K2’s cardiovascular effects are mediated through activation of matrix Gla
protein, an anti-calcific protein [275]. Carboxylated matrix Gla protein effectively protects
blood vessels and prevents calcification within the vascular wall [275].

Vitamin K’s anti-inflammatory properties may also help mitigate muscle damage
associated with intense physical activity. It has been suggested that vitamin K may help
prevent the inflammatory responses typically observed in athletes after exercise, potentially
aiding in faster recovery and improved performance in subsequent training sessions [276].
Moreover, Dahlquist et al. identified vitamin K as a factor in the regulation of hepcidin,
a hormone pivotal in iron metabolism, which is vital for endurance athletes susceptible
to iron deficiency [277,278]. Given that iron is essential for oxygen transport and muscle
function, adequate vitamin K levels may indirectly support athletic performance through
improved iron status.

Ultimately, the interplay between vitamin K and other micronutrients, particularly
vitamin D, underscores the complexity of nutrient interactions required for optimal athletic
performance. The combination of vitamins D and K has been shown to influence muscle
function and bone density, suggesting that these nutrients work synergistically to support
physical health in athletes [277,279]. Therefore, ensuring adequate intake of both vitamins
might be critical for athletes aiming to enhance their performance and recovery.

The limitations of the study on cross-correlations between vitamin K supplementation
and sports can be categorized as follows: (1) lack of performance data: no completed studies
demonstrate performance benefits in athletes; (2) dosing protocols: no established dosing
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guidelines for athletic populations; (3) timing strategies: no research on optimal timing of
supplementation relative to training or competition; (4) safety in athletes: limited safety
data for doses and durations relevant to sports applications; (5) mechanistic understanding:
unclear how vitamin K’s known physiological roles translate to athletic benefits, and
(6) population-specific effects: no data on how effects may vary by sport, training status, or
demographic factors.

General recommendations for the specific form of vitamin K include the following:
vitamin K1 (phylloquinone)—20 mcg/day for men, 90 mcg/day for women; vitamin K2
(menaquinone); MK-4 (synthetic): typically 45 mg/day in therapeutic application; MK-7
(natural): 100-200 mcg/day in most studies [280-285].

6. Summary

This review synthesizes findings from the past decade on the physiological impacts
of vitamin supplementation in athletes, with a focus on both water-soluble (B vitamins
and vitamin C) and fat-soluble (vitamins A, D, E, and K) compounds. High-intensity
endurance sports are closely associated with increased oxidative stress and inflammatory
responses. Antioxidant vitamins such as C, E, and A play a protective role by mitigating
oxidative damage in skeletal, cardiac, and bone tissues. Vitamin E stabilizes cell mem-
branes, vitamin C reduces serum cortisol, and vitamin K downregulates pro-inflammatory
cytokines—collectively contributing to reduced inflammation and enhanced performance.
Vitamin A further supports immune modulation and infection prevention, promoting
training consistency.

In conclusion, vitamin C supplementation shows consistent benefits for reducing
oxidative stress, muscle soreness, and cortisol levels, particularly at moderate daily doses.
However, evidence for performance enhancement is inconsistent, and excessive intake
may blunt adaptive responses. Overall, there is low to moderate certainty that vitamin C
benefits recovery and immune defense in athletes, and low certainty for direct performance
improvement. Food-first strategies are preferred, with supplementation considered in
periods of heavy training load or recovery from illness or injury.

In summary, the B-complex vitamins are indispensable cofactors in energy metabolism,
RBC synthesis, and neurological function. Deficiencies can impair endurance and recovery,
especially in high-demand athletes or those with restricted diets. However, supplementa-
tion beyond sufficiency does not consistently yield ergogenic benefits. Thus, there is moder-
ate certainty that B-vitamin sufficiency supports energy metabolism and recovery, but low
certainty that supplementation improves performance in already well-nourished athletes.
Monitoring risk groups such as female athletes and vegetarians/vegans remains essential.

Vitamin E supplementation can reduce oxidative stress and inflammatory markers,
supporting short-term recovery. However, high-dose interventions may impair long-term
training adaptations such as mitochondrial biogenesis. Overall, there is low to moderate
certainty for antioxidant and recovery benefits, but low certainty for sustained performance
enhancement. Dietary sources remain the preferred approach, and chronic high-dose
supplementation should be avoided.

Vitamin A influences immune regulation, metabolic control, and mitochondrial bio-
genesis, with mechanistic data suggesting a potential role in exercise recovery. However,
athlete-specific trials are minimal, and findings are inconsistent. The certainty of evidence
is low for health-related benefits and very low for direct performance outcomes. Dietary
adequacy should be ensured, but supplementation cannot be recommended for ergogenic
purposes at present.

Vitamin D deficiency is common among athletes, particularly those involved in indoor
sports or during winter seasons. Supplementation reliably improves bone mineral density,
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reduces the risk of stress fractures, and may enhance musculoskeletal recovery. Effects
on performance (strength, aerobic capacity, anaerobic power) remain inconsistent. There
is moderate certainty for benefits on bone and injury endpoints in deficient athletes, and
low certainty for direct performance gains. Screening and targeted supplementation are
recommended for individuals with deficiencies.

Vitamin K supports bone mineralization and vascular function, and may modulate
inflammation and iron metabolism. Athlete-specific evidence remains sparse, with limited
trials and emerging observational studies. There is low certainty regarding bone and vascular
benefits, and very low certainty regarding performance outcomes. Adequate dietary intake
should be prioritized, with supplementation reserved for research or clinical contexts. In
addition to vitamin-specific evidence, it is essential to acknowledge that specific athlete
subgroups are at a heightened risk for deficiencies. Female endurance athletes require
closer monitoring of B-complex vitamins (folate and B12) and vitamin K due to menstrual
losses and concerns about bone health. Indoor sports athletes are particularly prone to
vitamin D insufficiency during winter or in northern latitudes. Weight-class and combat
sport athletes may face antioxidant depletion (vitamins C and E) during rapid weight
loss phases, while vegetarian and vegan athletes remain vulnerable to B12 and vitamin
D deficiencies. These population-specific considerations underscore the importance of
tailored screening triggers—such as stress fractures, recurrent infections, or unexplained
fatigue—to inform targeted testing and supplementation strategies.

Female Endurance Athletes:

Risk profile: Higher prevalence of iron, folate, and B12 deficiencies due to menstrual
losses and dietary restriction during training. Vitamin D deficiency is also frequent in
northern latitudes.

Screening triggers Include Fatigue disproportionate to training load, recurrent illness,
stress fractures, and low energy availability.

Practical note: Annual screening for vitamin D, iron/ferritin, folate, and B12; closer
monitoring during periods of heavy training or dieting.

Indoor Sports Athletes (e.g., gymnasts, swimmers, basketball players):

Risk profile: High prevalence of vitamin D insufficiency due to limited sun exposure.

Screening triggers: Winter season, frequent indoor training, history of stress fractures
or bone pain.

Practical note: Baseline and winter vitamin D status should be assessed; supplementa-
tion targeted only if serum 25(OH)D < 75 nmol/L.

Weight-Class and Combat Sports Athletes:

Risk profile: B-complex vitamin insufficiencies (B1, B2, B6) and vitamin C depletion
during rapid weight loss or restrictive diets. Increased oxidative stress and immune
suppression during weight cutting.

Screening triggers: Recurrent upper respiratory infections, prolonged recovery, and
unexplained fatigue during training camps.

Practical note: Nutritional screening is recommended at the start of each competitive
season and should be monitored closely during dieting/weight-cutting phases.

Vegetarian and Vegan Athletes:

Risk profile: At risk for vitamin B12 and D deficiency, and potentially low intakes of
iron, zinc, and omega-3s. Folate is typically sufficient or high, but may mask B12 deficiency.

Screening triggers: Include neurological symptoms (such as tingling or impaired
reaction speed), fatigue, poor recovery, low hemoglobin levels, and suboptimal endurance.

Practical note: Annual screening for B12 and vitamin D; consider methylcobalamin
supplementation if levels are borderline or deficient.
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