

OPTIMAL 25(OH)D SERUM LEVEL IN RELATION TO ASSOCIATION WITH MUSCULOSKELETAL, METABOLIC, NEUROLOGICAL, AUTOIMMUNE AND INFECTIOUS DISEASES

© E.A. Troshina¹, E.A. Pigarova^{1 *}, T.L. Karonova², F.Kh. Dzgoeva¹, V.E. Radzinsky³, I.I. Baranov⁴, O.M. Lesnyak⁵, Yu.E. Dobrokhotova⁶, I.V. Kuznetsova⁷, N.V. Zarochentseva⁸, G.R. Bayramova⁴, O.A. Radaeva⁹, E.V. Ekusheva¹⁰, L.A. Suplotova¹¹, E.V. Matushevskaya¹⁰

¹National Medical Center of Endocrinology named after Academician I.I. Dedov, Moscow, Russia

²Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia

³Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia

⁴Federal State Budgetary Institution "National Medical Research Center of Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov" of the Ministry of Health of the Russian Federation, Moscow, Russia

⁵State Budgetary Educational Institution of Higher Professional Education "North-West State Medical University named after I.I. Mechnikov" of the Ministry of Health of the Russian Federation, St. Petersburg, Russia

⁶Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" of the Ministry of Health of the Russian Federation, Moscow, Russia

⁷International Association of Gynecologists, Endocrinologists and Therapists (IAGET), Moscow, Russia

⁸State Budgetary Healthcare Institution of the Moscow Region, Moscow Regional Clinical Hospital named after M.F. Vladimirsky, Moscow, Russia

⁹Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University named after N.P. Ogarev, Saransk, Russia

¹⁰Academy of Postgraduate Education of the Federal Scientific and Clinical Center of the Federal Medical and Biological Agency of Russia, Moscow, Russia

¹¹Federal State Budgetary Educational Institution of Higher Education Tyumen State Medical University of the Ministry of Health of the Russian Federation, Tyumen, Russia

This article presents an overview of current research on target vitamin D blood levels. It examines the biochemical and metabolic properties of vitamin D, as well as the challenges of standardizing 25(OH)D measurements and the variability of cutoff values across populations. It discusses the ambiguity of the scientific evidence and the need to consider individual factors when interpreting vitamin D levels. This review is unique in its comprehensive approach to analyzing the effects of vitamin D not only on bone health but also on immune and metabolic function, expanding the evolving understanding of the clinical significance of vitamin D. This paper emphasizes the importance of personalized recommendations for vitamin D prescription and dosing based on current clinical evidence and scientific standards. This analysis highlights the need for a personalized approach to vitamin D prescription to achieve and maintain blood levels of 30 to 60 ng/mL, noting that higher levels may be required for individuals with genetic or acquired resistance to the nutrient. The data obtained support the development of evidence-based, personalized clinical strategies for the prevention and treatment of diseases associated with vitamin D deficiency. The synthesized data are important for the development of research and clinical practice in the fields of endocrinology, obstetrics, dermatology, neurology, and immunology.

KEYWORDS: vitamin D; vitamin D deficiency; 25-hydroxyvitamin D; vitamin D metabolism; cholecalciferol; ergocalciferol; endocrinology.

OPTIMAL SERUM 25(OH)D LEVELS IN RELATION TO MUSCULOSKELETAL, METABOLIC, NEUROLOGICAL, AUTOIMMUNE AND INFECTIOUS DISEASES

© Ekaterina A. Troshina¹, Ekaterina A. Pigarova^{1 *}, Tatiana L. Karonova², Fatima K. Dzgoeva¹, Victor E. Radzinsky³, Nina Igor I. Baranov⁴, Olga M. Lesnyak⁵, Yulia E. Dobrokhotova⁶, Irina V. Kuznetsova⁷, V. Zarochentseva⁸, Gyuldana R. Bayramova⁴, Olga A. Radaeva⁹, Evgeniya V. Ekusheva¹⁰, Lyudmila A. Suplotova¹¹, Elena V. Matushevskaya¹⁰

¹Federal State Budgetary Institution "I.I. Dedov National Medical Research Center of Endocrinology" of the Russian Ministry of Health, Moscow, Russia

²Federal State Budgetary Institution "VA Almazov National Medical Research Center of Endocrinology" of the Russian Ministry of Health, Saint Petersburg, Russia

³Patrice Lumumba Peoples' Friendship University of Russia, Moscow, Russia

⁴Federal State Budgetary Institution "Academician VI Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology" of the Russian Ministry of Health, Moscow, Russia

*Corresponding author.

5 State Budgetary Educational Institution of Higher Professional Education "North-Western State Medical University named after II Mechnikov

National Research Medical University of the Russian Ministry of Health, St. Petersburg, Russia

⁶ Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia

7 International Association of Gynecologists, Endocrinologists, and Therapists (IAGET), Moscow, Russia

8 Moscow Regional Research and Clinical Institute ("MONIKI"), Moscow, Russia

9 Federal State Budgetary Educational Institution of Higher Education, National Research Ogarev Mordovia State University, Saransk, Russia

¹⁰ Academy of Postgraduate Education of the Federal State Budgetary Institution Federal Scientific and Clinical Center of the Federal Medical and Biological Agency of Russia, Moscow, Russia

11 Tyumen State Medical University of the Russian Ministry of Health, Tyumen, Russia

This article presents an overview of current research on determining target blood levels of vitamin D. It examines the bio-chemical and metabolic properties of vitamin D, as well as the challenges of standardizing 25(OH)D measurements and the variability of threshold values across populations. It discusses ambiguities in scientific data and the need to consider individual factors when interpreting vitamin D levels. This review is unique in its comprehensive approach to analyzing the effects of vitamin D not only on bone health but also on immune and metabolic functions, which broadens ever evolving understanding of the clinical significance of vitamin D. This work emphasizes the importance of personalized recommendations for vitamin D dosing and prescription based on current clinical data and scientific standards. Performed analysis highlights the need for personalized vitamin D supplementation to reach and maintain blood levels between 30 and 60 ng/mL, noting that higher levels might be necessary for people with genetic or resistance acquired. These insights substantiate the development of evidence-based, personalized clinical strategies for the prevention and treatment of vitamin D deficiency-related disorders. The synthesized data offer significant implications for advanced research and clinical practice in endocrinology, obstetrics, dermatology, neurology and immunology.

KEYWORDS: vitamin D; vitamin D Deficiency; 25-Hydroxyvitamin D; vitamin D metabolism; cholecalciferol; ergocalciferol; endocrinology.

INTRODUCTION

Vitamin D deficiency is one of the most common nutrient deficiencies worldwide, affecting approximately 1 billion people according to epidemiological studies [1]. Vitamin D's primary biological role in the human body is known to be the regulation of calcium and phosphorus metabolism. Vitamin D has a positive effect on intestinal calcium absorption, increases renal calcium reabsorption, and supports bone mineralization by regulating chondrocyte and osteoblast differentiation [2].

The results of the studies have demonstrated a link between low vitamin D status and an increased risk of developing various socially significant diseases, including musculoskeletal, metabolic, cardiovascular, malignant and infectious diseases. The contribution of vitamin D deficiency to the pathogenesis of neurological, autoimmune and endocrine diseases has also been established [3]. Given the high prevalence of vitamin D deficiency, studies demonstrating the pleiotropic and multimodal effects of vitamin D depending on the level of 25(OH)D in the blood are still extremely few. This is probably due to the fact that any other

effects of vitamin D not associated with phosphorus-calcium metabolism have become the focus of researchers relatively recently, and most studies are focused on the skeletal effects of vitamin D. Given the high prevalence of vitamin D deficiency, the availability of experimental studies devoted to the pleiotropic and multimodal effects of vitamin D, hypotheses on the use of this

The use of vitamin D as a prohormone for the prevention of a number of socially significant diseases is being actively discussed worldwide. This expert council analyzed and summarized existing experimental and clinical data regarding the effects of vitamin D on various organs and systems [4, 5] and proposed possible ways to realize the classical and pleiotropic effects of vitamin D on health.

population.

Definition and Epidemiology

Vitamin D deficiency is a condition characterized by a decrease in serum 25(OH)D concentrations below optimal values, which can potentially lead to decreased intestinal calcium absorption, the development of secondary hyperparathyroidism and an increased risk of fractures, especially in the elderly [2].

Vitamin D deficiency and insufficiency are defined as serum 25(OH)D levels less than 20 ng/ml and 20 to 30 ng/ml, respectively [2]. An analysis of 14 population-based studies assessing the prevalence of vitamin D deficiency in European countries showed that among 55,844 European residents of various ages, blood 25(OH)D levels below 12 ng/ml were observed in 13% of those examined, with significant seasonal differences (the proportion of 25(OH)D levels below 12 ng/ml was 18% in the period from October to March and 8% from April to November). Levels below 20 ng/ml were detected in 40% of those examined [6, 7].

The results obtained in the study of the prevalence of vitamin D deficiency and insufficiency in the Russian Federation are consistent with global data regarding seasonal fluctuations, but significantly exceed the scale of the values

The prevalence of vitamin D deficiency and insufficiency in other countries is largely due to the geographic location of the Russian Federation, as well as the lack of centralized fortification of foods with this nutrient. Thus, blood 25(OH)D levels of less than 30 ng/ml were diagnosed in 70–95% of examined adults [8–14].

It should be noted that the first multicenter registry study conducted in the Russian Federation demonstrated the presence of blood 25(OH)D levels below 20 ng/ml in 56% of the examined individuals in the spring (March-May) and in 26% in the autumn (October-November) observation period, and levels below 30 ng/ml in 84% and 62%, respectively [15]. These data are consistent with the results of a prospective cohort study assessing 25(OH)D levels in pregnant women, which demonstrated the presence of low vitamin D levels in the first trimester of pregnancy in 84.3% of cases, regardless of the time of year the examination was conducted [16]. Similar data on the prevalence of deficiency of this nutrient in the Russian Federation were presented at the beginning of the COVID-19 pandemic [17].

VITAMIN D METABOLISM

It is known that vitamin D enters the body in two ways: through the synthesis of cholecalciferol (D3) from the precursor 7-dehydrocholesterol in the skin under the influence of ultraviolet (UV) radiation of type B, as well as with food in the form of vitamin D of animal origin - cholecalciferol (D3, INN of the drug - cholecalciferol) and of plant origin - ergocalciferol (D2).

The metabolic steps for both forms of vitamin D (D2 and D3) are common and include the first step of hydroxylation by the enzymes CYP2R1 and CYP27A1 in the liver to form calcidiol (25(OH)D) and the second step by the enzyme CYP27B1, mainly in the kidneys, to the active metabolite of calcitriol, 1,25(OH)2D. The main function of 1,25(OH)2D is to maintain calcium and phosphorus homeostasis. However, by binding to intracellular specific vitamin D receptors (VDRs) in tissues, 1,25(OH)2D initiates many extraosseous metabolic processes. Unlike renal CYP27B1, extrarenal forms of the enzyme, which mediate numerous pleiotropic effects, are regulated not by signaling from parathyroid hormone (PTH), fibroblast growth factor (FGF-23), calcium, or phosphate, but by regulatory factors that depend on a

specific function. It should also be noted that the regulation of extrarenal CYP27B1 is dependent on the concentration of circulating 25(OH)D in the blood [3, 18, 19].

PLEIOTROPIC EFFECTS OF VITAMIN D

Previous studies have shown that vitamin D regulates the cell cycle and thus has a significant impact on the functioning of human organs and systems. By binding to VDR receptors on cells of the immune, nervous, digestive, reproductive, and cardiovascular systems,

vascular system, vitamin D has regulatory, anti-inflammatory, antiproliferative, and antifibrotic effects [20].

There is limited information in the literature on the optimal threshold values of 25(OH)D concentration in blood serum for the implementation of pleiotropic effects, which vary from 25 ng/ml to 60 ng/ml [21–23]. These 25(OH)D concentrations are consistent with the recommendations of the Russian Association of Endocrinologists, where target levels are prescribed as 30–60 ng/ml [2].

It should be recognized that, unlike the effect of vitamin D on calcium metabolism, its extraosseous pleiotropic effects are much more difficult to evaluate in clinical practice. Based on cohort studies, it has been hypothesized that higher serum 25(OH)D levels are necessary for the pleiotropic effects to be realized. For example, associations have been found between a lower incidence of cancer, cardiovascular, and autoimmune diseases, the development of diabetes mellitus (DM), falls, fractures, and even mortality with higher serum 25(OH)D values [24, 25]. However, all of these differences were obtained based on the analysis of clinical outcomes in large population cohorts. However, in such studies, it may be difficult to prove a cause-and-effect relationship between one factor, for example, the level of vitamin D status, and a clinical outcome, in particular the development of cancer or other diseases.

To understand the additional benefit associated specifically with vitamin D supplementation, large-scale randomized controlled trials have been conducted assessing the efficacy of achieving 25(OH)D levels of 40 ng/mL and 50 ng/mL, with endpoints of mortality, cancer, type 2 diabetes mellitus (T2DM), falls, fractures, and cardiovascular events. These studies failed to find significant differences in the primary outcomes between the groups of patients taking vitamin D supplements [26–31]. All of these studies fully met the criteria for conducting randomized clinical trials of medicinal products. However, there were a number of limitations: the populations included in most protocols were not limited to patients with baseline vitamin D deficiency; In some of them, prophylactic doses of cholecalciferol (≥800 IU per day) were allowed in the placebo groups; some studies did not take into account the individual characteristics of vitamin D metabolism in the included patients [32].

Thus, taking into account the results

Based on the clinical, epidemiological, and cohort studies conducted, we can talk about the potential benefits of taking vitamin D to improve health indicators and quality of life, in particular to reduce the risk of type 2 diabetes, acute respiratory viral infections, impact on reproductive outcomes, etc. It should be emphasized that the required doses of vitamin D and the "optimal level of 25(OH)D" may differ depending on the goals set (Table 1). Further large-scale studies require

Table 1. Pleiotropic effects of vitamin D and associated mechanisms and nosologies

Effects on various body systems	Mechanism of development and clinical effects	Estimated optimal level 25(OH)D (ng/ml)
Musculoskeletal system [33]	<p>1,25(OH)2D interacts with the vitamin D nuclear receptor (VDR) in the small intestine, increasing the expression of epithelial calcium channel and calcium binding protein, leading to increased calcium absorption from the diet.</p> <p>Positive clinical effect - effective absorption of calcium in the intestine, favorable response to bisphosphonate therapy</p>	>30
Cells and tissues of the immune system [22, 33–38]	<p>Effect on the differentiation of active CD4+ T cells; enhancement of the inhibitory function of T cells; differentiation of monocytes into macrophages with increased antibacterial and antiviral activity; suppression of IL-12, γ-interferon, Th1 immune responses ; suppression of TGF-γ/Smad3.</p> <p>Positive clinical effect - reduction in the frequency of recurrent infections, respiratory diseases (flu, tuberculosis, COPD), chronic fatigue syndrome, Behcet's disease, inflammatory bowel disease, rheumatoid arthritis</p>	>50
Antiproliferative, antifibrotic action [37, 39–42]	<p>Induction of apoptosis in malignant cells (Bcl2/Bax interaction); influence on neurotrophic factors; inhibition of the TGF-γ/EGFR growth cycle, reduction of keratinocyte proliferation.</p> <p>Positive clinical effect - reduction in the incidence of prostate cancer, breast cancer, colon cancer, myeloproliferative diseases and all-cause mortality</p>	≥ 40
Cardiovascular system [37, 43–45]	<p>Feedback with the renin-angiotensin system, regulation of blood pressure and electrolyte balance; regulation of the process of myocardial cell hypertrophy; suppression of inflammatory cytokines, angiogenesis and vascular calcification.</p> <p>Positive clinical effect - reduction in the prevalence and severity of arterial hypertension, myocardial infarction, congestive heart failure, atherosclerosis</p>	≥ 40
Nervous system [46–54]	<p>Neurotrophic (effect on nerve growth factor NGF), neuroprotective (influence on synaptic plasticity processes), anti-inflammatory, antioxidant (suppression of oxidative stress in neurons and microglia), antinociceptive action, regulation of dopamine and serotonin transmission; optimal functioning of cortical neurons</p> <p>brain.</p> <p>Positive clinical effect - improved cognitive functioning; reduced risk of developing neurodegenerative, autoimmune neurological diseases, neuropsychological disorders; sleep disorders; reduced frequency and intensity of primary headaches (migraines)</p>	>40

Continuation of Table 1

Effects on various body systems	Mechanism of development and clinical effects	Estimated optimal level 25(OH)D (ng/ml)
Reproductive system [55–57]	<p>Regulation of the expression of genes involved in the synthesis and metabolism of estrogen; increased aromatase production; regulation of the release of GnRH, LH, FSH; enhanced function of the corpus luteum and progesterone.</p> <p>Positive clinical effect - normalization of the menstrual cycle, reduction in the prevalence and severity of PCOS, gestational diabetes, preeclampsia and premature birth</p>	>40
	<p>Protection and prevention of β-cell destruction, reduction of autoimmune damage by inhibiting proinflammatory cytokines (TNF-β). β-cells of the pancreas [58]</p> <p>Positive clinical effect - reduced risk of earlier onset and more severe course of type 1 and type 2 diabetes</p>	>50
Vitamin D resistance [36–38]	<p>Genetic or acquired resistance to vitamin D is a key pathogenic mechanism in autoimmune diseases, including psoriasis. Vitamin D regulates the function of keratinocytes, key cells in the pathogenesis of psoriasis.</p> <p>Positive clinical effect - reduction in the prevalence and severity of autoimmune diseases, multiple sclerosis, psoriasis</p>	≥ 80

Note: COPD — chronic obstructive pulmonary disease; GnRH — gonadotropin-releasing hormone; LH — luteinizing hormone; FSH — follicle-stimulating hormone; PCOS — polycystic ovary syndrome; TNF- β — tumor necrosis factor-alpha.

a personalized approach with an emphasis on assessing the effects of vitamin D therapy in groups with varying degrees of deficiency.

VITAMIN D STATUS CORRECTION

A 25(OH)D concentration range of 30–40 ng/mL can usually be achieved with vitamin D supplementation at doses of 2000–4000 IU/day. To achieve values above 40 ng/mL, higher doses of cholecalciferol are required in most cases [59]. Research results have shown that whole-body exposure to a single minimal erythematous dose of

simulated sunlight can result in the production of 10,000 to 25,000 IU of vitamin D in the skin [60]. Thus, it is logical to assume that such doses of vitamin D can be considered safe. This fact can be confirmed by the data from published studies that reported the safety of taking high doses of vitamin D. In particular, the results of observation of 3882 participants included in a study in Canada between 2013 and 2015 are publicly available and indicate the effects of taking vitamin D3 at a dose of up to 15,000 IU / day for 6–18 months. The aim of this study was to determine the doses of vitamin D required to achieve a concentration of 25 (OH) D > 40 ng / ml. It was found that to achieve the target concentration of 25 (OH) D, participants with a normal BMI should

Participants with overweight and obesity were advised to take at least 6000 IU of vitamin D per day, while overweight and obese participants were advised to take 7000 IU/day and 8000 IU/day, respectively. It is important to note that, in rare cases, serum 25(OH)D concentrations reaching 120 ng/ml were not associated with either calcium homeostasis disturbances or toxicity [61].

Also of interest are the results of another study in which 777 long-term hospitalized patients took 5,000 to 50,000 IU/day of vitamin D.

During the observation, it was found that the subgroup of patients taking vitamin D at a dose of 5000 IU/day achieved average 25(OH)D concentrations of 65 ± 20 ng/ml after 12 months of therapy, while patients taking 10,000 IU/day achieved 25(OH)D levels of 100 ± 20 ng/ml. It should be noted that none of the patients who achieved 25(OH)D concentrations in the range of 40–155 ng/ml developed hypercalcemia, nephrolithiasis, or any other symptoms characteristic of the clinical manifestations of vitamin D overdose [62]. It is also necessary to dwell on the results of the only open, multicenter, comparative, randomized, phase III clinical trial conducted in the Russian Federation, the purpose of which was to evaluate the efficacy and safety of therapy with

Fortedetrim, in comparison with therapy with Vigantol®, in patients with vitamin D deficiency [63]. The study involved 150 patients.

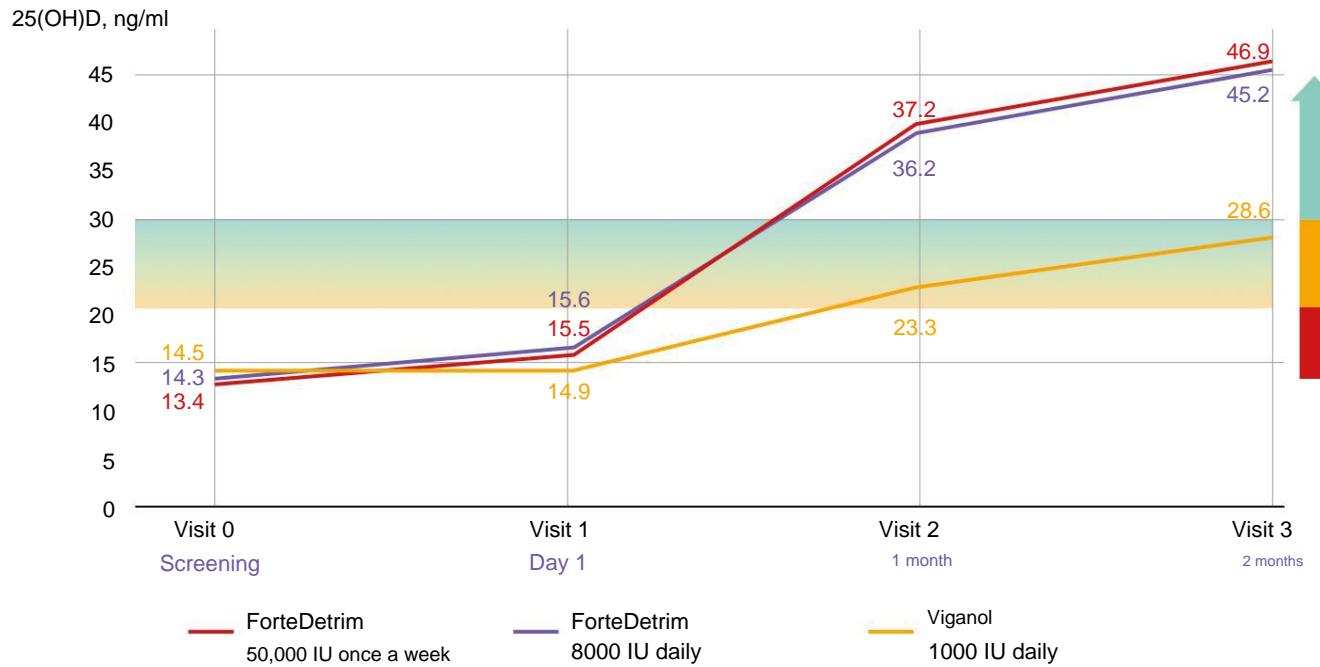


Figure 1. Changes in serum 25(OH)D concentration after 2 months of treatment for vitamin D deficiency [63].

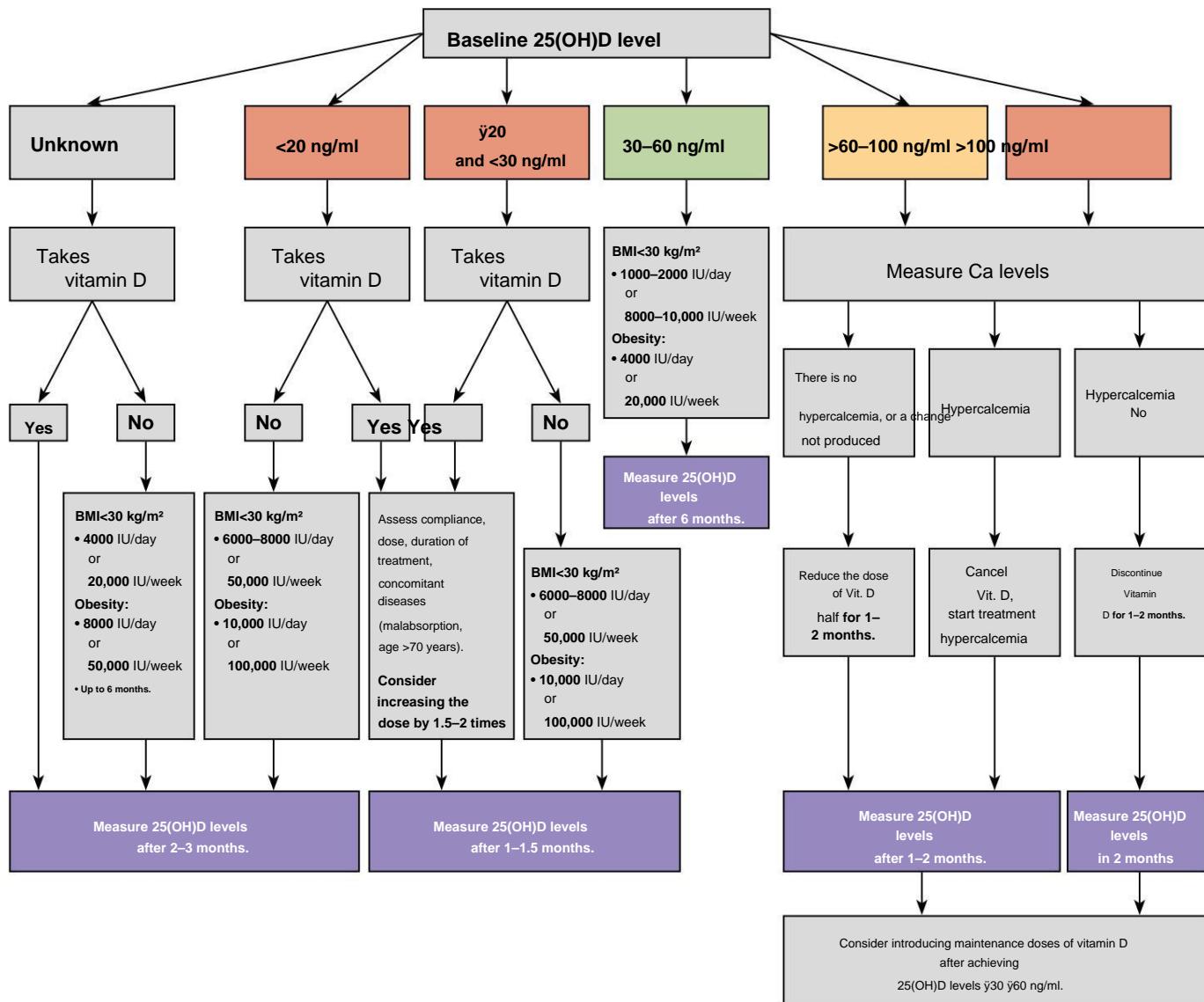


Figure 2. Algorithm for prescribing vitamin D preparations to achieve optimal 25(OH)D values in blood serum [2, 64].

subjects randomized into 3 groups (50 people each), in which Fortedetrim capsules were used for loading doses in groups 1(T) and 2(R), respectively, 50,000 IU once a week (5 capsules of 10,000 IU) and 8,000 IU daily (2 capsules of 4,000 IU), and in comparison group 3(X) — Vigantol® 1,000 IU daily (2 drops). Comparative treatment results are clearly demonstrated in the graph (Fig. 1).

As can be seen from the data presented in the graph, therapy with Fortedetrim at doses of 8000 IU daily or 50,000 IU once a week in groups 1 and 2, respectively, compared with the comparison group taking vitamin D at a dose of 1000 IU, not only led to a rapid increase in the level of 25(OH)D in the blood serum after a month of therapy, but was also not associated with a difference in the number and severity of undesirable and side effects [63]. Finally, it should be noted that today the need to eliminate vitamin D deficiency in the population remains relevant for healthcare, with the achievement of a concentration of 25(OH)D in the blood

serum of at least 20 ng/ml. For this, in addition to a healthy lifestyle, including proper nutrition and physical activity, it is necessary to take adequate doses of vitamin D supplements. The algorithm for prescribing vitamin D supplements depending on the initial level of 25(OH)D is presented in Figure 2.

The selection of 25(OH)D levels for the pleiotropic and multimodal effects of vitamin D should take into account the nosology, age, weight, gender, and ethnicity of patients. Optimal serum 25(OH)D values are considered to be a

range from $\ddot{y}30$ ng/mL to $\ddot{y}60$ ng/mL; however, individuals with genetic or acquired resistance to vitamin D may need to exceed the upper limit. It is also necessary to consider that patients with certain pathological conditions, such as obesity and diabetes mellitus, as well as those taking medications that affect vitamin D metabolism, may require doses exceeding the general population therapeutic, maintenance, and prophylactic doses.

Thus, determining methods for achieving and maintaining optimal vitamin D levels in the blood should be based on an individualized approach, taking into account a range of factors and clinical data. These findings have important practical implications for endocrinology and related disciplines, contribute to the development of personalized medicine, and ensure improved prevention and treatment of diseases associated with vitamin D deficiency.

CONCLUSION

Given the abundant evidence of significant health benefits associated with achieving serum 25(OH)D levels above 30–40 ng/ml and the absence of side effects, it is advisable to take a responsible approach to the use of vitamin D supplements. Establishing individual threshold values

ADDITIONAL INFORMATION

Funding sources. This work was supported by Akrikhin.

Conflict of Interest. The authors declare no obvious or potential conflicts of interest related to the content of this article.

Author Contributions. All authors approved the final version of the article before publication and agreed to be accountable for all aspects of the work, including appropriately investigating and resolving questions related to the accuracy or integrity of any part of the work.

REFERENCES

1. Lips P, de Jongh RT, van Schoor NM. Trends in Vitamin D Status Around the World. *JBMR Plus*. 2021;5(12):e10585. doi: <https://doi.org/10.1002/jbm4.10585>
2. Vitamin D deficiency in adults. Clinical guidelines. - RAE, 2021. [Vitamin D deficiency in adults. Clinical guidelines. - RAE, 2021 ... RAE, 2021 (In Russ.)]. https://www.endocrincentr.ru/sites/default/files/specialists/science/clinic-recommendations/kr_deficit_vitamin_d_2021.pdf
3. Grant WB, Al Anouti F, Boucher BJ, Dursun E, Gezen-Ak D, et al. A Narrative Review of the Evidence for Variations in Serum 25-Hydroxyvitamin D Concentration Thresholds for Optimal Health. *Nutrients*. 2022;14(3):639. doi: <https://doi.org/10.3390/nu14030639>
4. Holick MF. The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. *Mol Aspects Med*. 2008;29:361–8
5. Cashman KD, Kiely M. Towards prevention of vitamin D deficiency and beyond—knowledge gaps and research needs in vitamin D nutrition and public health. *Br J Nutr*. 2011;106:1617–27
6. Sempos CT, Vesper HW, Phinney KW, Thienpont LM, Coates PM; Vitamin D Standardization Program (VDSP). Vitamin D status as an international issue: national surveys and the problem of standardization. *Scand J Clin Lab Invest Suppl*. 2012;243:32–40. doi: <https://doi.org/10.3109/00365513.2012.681935>
7. Cashman KD, Dowling KG, Škrabáková Z, Gonzalez-Gross M, Valtueña J, et al. Vitamin D deficiency in Europe: pandemic? *Am J Clin Nutr*. 2016;103(4):1033–44. doi: <https://doi.org/10.3945/ajcn.115.120873>
8. Karonova TL, et al. The prevalence of vitamin D deficiency in the northwestern region of the Russian Federation among the residents of St. Petersburg and Petrozavodsk. *Osteoporosis and Bone Diseases*. 2013;16(3):3–7. (In Russ.) doi: <https://doi.org/10.14341/osteo201333-7>
9. Markova TN, et al. Prevalence of vitamin D deficiency and risk factors for osteoporosis in young adults. *Bulletin of the Chuvash University*. 2012;234(3):441–446 (In Russ.)
10. Agureeva OV et al. Analysis of vitamin D levels in the blood serum of patients in the Rostov region // *Osteoporosis and osteopathy*. - 2016. - Vol. 19. - No. 2. - P. 47. [Agureeva OV, et al. Analysis of vitamin D levels in the blood serum of patients in the Rostov region. *Osteoporosis and Bone Diseases*. 2016;19(2):47–47. (In Russ.) doi: <https://doi.org/10.14341/osteo2016247-47>
11. Borisenko E.P., Romantsova E.B., Babtseva A.F. Vitamin D status of children and adults in the Amur Region. *Bulletin of Physiology and Pathology of Respiration*. 2016;(60):57–61. [Borisenko EP, Romantsova EB, Babtseva AF. Vitamin D duration in children and adults in the Amur region. *Bulletin of Respiratory Physiology and Pathology*. 2016;(60):57–61.] doi: <https://doi.org/10.12737/20121>

12. Malyavskaya SI et al. Vitamin D levels in representatives of different population groups of the city of Arkhangelsk // Human Ecology. - 2018. - Vol. 25. - No. 1. - P. 60–64. [Malyavskaya SI, et al.]

25(OH)D levels in the population of Arkhangelsk city in different age groups. *Ekologiya cheloveka (Human Ecology)*. 2018;25(1):60-64. (In Russ.) doi: <https://doi.org/10.33396/1728-0869-2018-1-60-64>

13. Nurlygayanov R.Z. et al. Vitamin D levels in older people 50 years old, permanently residing in the Republic of Bashkortostan, during the period of maximum insolation // Osteoporosis and osteopathy. - 2015. - No. 1. - P. 7-9. [Nurlygayanov RZ, et al. The level of vitamin D in people older than 50 years residing in the republic of Bashkortostan during the period of maximum insolation. *Osteoporosis and Bone Diseases*. 2015;18(1):7-9. (In Russ.) doi: <https://doi.org/10.14341/osteob201517-9>]

14. Spasich T.A. et al., Hygienic significance of vitamin D deficiency in the population of the Irkutsk region and ways of its prevention // *Acta Biomedica Scientifica*. 2014. No. 6 (100). [Spasich TA, et al. Hygienic significance of vitamin D deficiency in the population of the Irkutsk region and ways of its prevention. *Acta Biomedica Scientifica*. 2014;6:100 (In Russ.) URL: <https://cyberleninka.ru/article/n/gigienicheskoe-znachenie-defitsita-vitama-d-u-naseleniya-irkutskoy-oblasti-i-puti-ego-profilaktiki> (accessed: 14.11.2025).]

15. Suptolova L.A. et al. The first Russian multicenter [Suptolova LA, et al. The first Russian multicenter non-interventional registry study to study the incidence of vitamin D deficiency and insufficiency in the Russian Federation. *Terapevticheskii arkhiv*. 2021;93(10):1209-1216. (In Russ.) doi: <https://doi.org/10.26442/00403660.2021.10.201071>]

16. Khazova EL, et al. Seasonal fluctuations of level of 25-hydroxycholecalciferol in pregnant women living in Saint Petersburg. *Gynecology*. 2015;17(4):38-42 (In Russ.)

17. Karonova TL, Andreeva AT, Golovatyuk KA, Bykova ES, Skibo II, Grineva EN, Shlyakhto EV. SARS-CoV-2 morbidity depending on vitamin D status. *Problems of Endocrinology*. - 2021. - Vol. 67. - No. 5. - P. 20-28. [Karonova TL, Andreeva AT, Golovatyuk KA, Bykova ES, Skibo II, Grineva EN, Shlyakhto EV. SARS-CoV-2 morbidity depending on vitamin D status. *Problems of Endocrinology*. - 2021. - Vol. 67. - No. 5. - P. 20-28. 2021;67(5):20-28. (In Russ.) doi: <https://doi.org/10.14341/probl12820>]

18. Saponaro F, Saba A, Zucchi R. An Update on Vitamin D Metabolism. *Int J Mol Sci*. 2020;21(18):6573. doi: <https://doi.org/10.3390/ijms21186573>

19. Jones G. Extrarenal vitamin D activation and interactions between vitamin D₃, vitamin D₂, and vitamin D analogs. *Annu Rev Nutr*. 2013;33:23-44. doi: <https://doi.org/10.1146/annurev-nutr-071812-161203>

20. Lai YH, Fang TC. The pleiotropic effect of vitamin d. *ISRN Nephrol*. 2013; 2013:898125. doi: <https://doi.org/10.5402/2013/898125>

21. Pludowski P, Holick MF, Grant WB, Konstantinowicz J, Masicarenhas MR, et al. Vitamin D supplementation guidelines. *J Steroid Biochem Mol Biol*. 2018;175:125-135. doi: <https://doi.org/10.1016/j.jsbmb.2017.01.021>

22. Wimalawansa SJ. Infections and Autoimmunity—The Immune System and Vitamin D: A Systematic Review. *Nutrients*. 2023;15(17):3842. doi: <https://doi.org/10.3390/nu15173842>

23. Dragomir RE, Toader OD, Gheoca Mutu DE, Stănculescu RV. The Key Role of Vitamin D in Female Reproductive Health: A Narrative Review. *Cureus*. 2024;16(7):e65560. doi: <https://doi.org/10.7759/cureus.65560>

24. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. *Am J Clin Nutr*. 2006;84(1):18-28. doi: <https://doi.org/10.1093/ajcn/84.1.18>

25. McDonnell SL, Baggerly LL, French CB, Heaney RP, Gorham ED, Holick MF, Scragg R, Garland CF. Incidence rate of type 2 diabetes is >50% lower in GrassrootsHealth cohort with median serum 25-hydroxyvitamin D of 41 ng/ml than in NHANES cohort with median of 22 ng/ml. *J Steroid Biochem Mol Biol*. 2016;155(Pt B):239-44. doi: <https://doi.org/10.1016/j.jsbmb.2015.06.013>

26. Scragg R, et al. A Randomized Clinical Trial. *JAMA Cardiol*. 2017;2(6):608-616. doi: <https://doi.org/10.1001/jamacardio.2017.0175>

27. Khaw KT, et al. Effect of monthly high-dose vitamin D supplementation on falls and non-vertebral fractures: secondary and post-hoc outcomes from the randomized, double-blind, placebo-controlled ViDA trial. *Lancet Diabetes Endocrinol*. 2017;5(6):438-447. doi: [https://doi.org/10.1016/S2213-8587\(17\)30103-1](https://doi.org/10.1016/S2213-8587(17)30103-1) 28. Manson JE et al; VITAL Research Group. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. *N Engl J Med*. 2019;380(1):33-44. doi: <https://doi.org/10.1056/NEJMoa1809944>

29. Lappe J et al. Effect of Vitamin D and Calcium Supplementation on Cancer Incidence in Older Women: A Randomized Clinical Trial. *JAMA*. 2017;317(12):1234-1243. doi: <https://doi.org/10.1001/jama.2017.2115>

30. Pittas AG et al; D2d Research Group. Vitamin D Supplementation and Prevention of Type 2 Diabetes. *N Engl J Med*. 2019;381(6):520-530. doi: <https://doi.org/10.1056/NEJMoa1900906>

31. Bischoff-Ferrari HA, et al.; DO-HEALTH Research Group. DO-HEALTH: Vitamin D3 - Omega-3 - Home exercise - Healthy aging and longevity trial - Design of a multinational clinical trial on healthy aging among European seniors. *Contemporary Clin Trials*. 2021; 100:106124. doi: <https://doi.org/10.1016/j.cct.2020.106124>

32. Pilz S, Trummer C, Theiler-Schwetz V, Grüber MR, Verheyen ND, et al. Critical Appraisal of Large Vitamin D Randomized Controlled Trials. *Nutrients*. 2022;14(2):303. doi: <https://doi.org/10.3390/nu14020303>

33. Carmel AS, Shieh A, Bang H, Bockman RS. The 25(OH)D level needed to maintain a favorable bisphosphonate response is >33 ng/ml. *Osteoporos Int*. 2012;23(10):2479-87. doi: <https://doi.org/10.1007/s00198-011-1868-7>

34. Kaufman HW, Niles JK, Kroll MH, Bi C, Holick MF. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. *PLoS One*. 2020;15(9):e0239252. doi: <https://doi.org/10.1371/journal.pone.0239252>

35. Seal KH, Bertenthal D, Carey E, Grunfeld C, Bilek DD, Lu CM. Association of Vitamin D Status and COVID-19-Related Hospitalization and Mortality. *J Gen Intern Med*. 2022;37(4):853-861. doi: <https://doi.org/10.1007/s11606-021-07170-0>

36. Lemke D, Klement RJ, Schweiger F, Schweiger B, Spitz J. Vitamin D Resistance as a Possible Cause of Autoimmune Diseases: A Hypothesis Confirmed by a Therapeutic High-Dose Vitamin D Protocol. *Front Immunol*. 2021;12:655739. doi: <https://doi.org/10.3389/fimmu.2021.655739>

37. Wimalawansa SJ. Infections and Autoimmunity—The Immune System and Vitamin D: A Systematic Review. *Nutrients*. 2023;15(17):3842. doi: <https://doi.org/10.3390/nu15173842>

38. Wimalawansa SJ. Non-musculoskeletal benefits of vitamin D. *J Steroid Biochem Mol Biol*. 2018;175:60-81. doi: <https://doi.org/10.1016/j.jsbmb.2016.09.016>

39. Jayedi A, Rashidy-Pour A, Shab-Bidar S. Vitamin D status and risk of dementia and Alzheimer's disease: A meta-analysis of dose-response. *Nutr Neurosci*. 2019;22(11):750-759. doi: <https://doi.org/10.1080/1028415X.2018.1436639>

40. McDonnell SL, Baggerly CA, French CB, Baggerly LL, Garland CF, Gorham ED, Hollis BW, Trump DL, Lappe JM. Breast cancer risk markedly lower with serum 25-hydroxyvitamin D concentrations >60 vs <20 ng/ml (150 vs 50 nmol/L): Pooled analysis of two randomized trials and a prospective cohort. *PLoS One*. 2018;13(6):e0199265. doi: <https://doi.org/10.1371/journal.pone.0199265>

41. McCullough ML, Zoltick ES, Weinstein SJ, Fedirko V, Wang M, et al. Circulating Vitamin D and Colorectal Cancer Risk: An International Pooling Project of 17 Cohorts. *J Natl Cancer Inst*. 2019;111(2):158-169. doi: <https://doi.org/10.1093/jnci/djy087>

42. Shirvani A, Kalajian TA, Song A, Holick MF. Disassociation of Vitamin D's Calcemic Activity and Non-calcemic Genomic Activity and Individual Responsiveness: A Randomized Controlled Double-Blind Clinical Trial. *Sci Rep*. 2019;9(1):17685. doi: <https://doi.org/10.1038/s41598-019-53864-1>

43. Li Y, Tong CH, Rowland CM, Radcliff J, Bare LA, McPhaul MJ, Devlin JJ. Association of changes in lipid levels with changes in vitamin D levels in a real-world setting. *Sci Rep*. 2021;11(1):21536. doi: <https://doi.org/10.1038/s41598-021-01064-1>

44. Dai L, Liu M, Chen L. Association of Serum 25-Hydroxyvitamin D Concentrations With All-Cause and Cause-Specific Mortality Among Adult Patients With Existing Cardiovascular Disease. *Front Nutr*. 2021;8:740855. doi: <https://doi.org/10.3389/fnut.2021.740855>

45. Mirhosseini N, Vatanparast H, Kimball SM. The Association between Serum 25(OH)D Status and Blood Pressure in Participants of a Community-Based Program Taking Vitamin D Supplements. *Nutrients*. 2017;9:1244. doi: <https://doi.org/10.3390/nu9111244>

46. Novotny D.A., Zhukova N.G., Shperling L.P., Stolyarova V.A., Zhukova I.A., Agasheva A.E., Shtaymets S.V., Druzhinina O.A. Vitamin D (steroid hormone) and diseases of the nervous system (literature review). // *Siberian Scientific Medical Journal*. - 2020. - Vol. 40. - No. 5. - P. 24-37.
[Novotny DA, Zhukova NG, Shperling LP, Stolyarova VA, Zhukova IA, Agasheva AE, Shtaymets SV, Druzhinina OA. Vitamin D (steroid hormone) and diseases of the nervous system (literature review). *Siberian Scientific Medical Journal*. 2020;40(5):24-37 (In Russ.)] doi: <https://doi.org/10.15372/SSMJ20200503>

47. Wu Z, Malih Z, Stewart AW, Lawes CM, Scragg R. Effect of Vitamin D Supplementation on Pain: A Systematic Review and Meta-analysis. *Pain Physician*. 2016;19(7): 415-27. PMID: 27676659.

48. Di Somma C, Scarano E, Barrea L, Zhukouskaya VV, Savastano S, Mele C, Scacchi M, Aimaretti G, Colao A, Marzullo P. Vitamin D and Neurological Diseases: An Endocrine View. *Int J Mol Sci*. 2017;18(11):2482. doi: <https://doi.org/10.3390/ijms18112482>

49. Nerhus M, Berg AO, Simonsen C, Haram M, Haatveit B, et al. Vitamin D Deficiency Associated With Cognitive Functioning in Psychotic Disorders. *J Clin Psychiatry*. 2017;78(7):e750-e757. doi: <https://doi.org/10.4088/JCP.16m10880>

50. Gromova O.A., Torshin I.Yu., Putilina M.V., Sardaryan I.S., Fedotova L.E., Limanova O.A. Nociception: the roles of vitamin D. // *Neurology, neuropsychiatry, psychosomatics*. 2021. - V. 13. - No. 1. - P. 145-153.
[Gromova OA, Torshin IYU, Putilina MV, Sardaryan IS, Fedotova LE, Limanova OA. Nociception: the role of vitamin D. *Neurology, neuropsychiatry, psychosomatics*. 2021;13(1):145-153 (In Russ.)] doi: <https://doi.org/10.14412/2074-2711-2021-1-145-153>

51. Prono F, Bernardi K, Ferri R, Bruni O. The Role of Vitamin D in Sleep Disorders of Children and Adolescents: A Systematic Review. *Int. J. Mol. Sci.* 2022;23:1430. doi: <https://doi.org/10.3390/ijms23031430>

52. Nowaczecka M, Wicijski M, Osijiski S, Kajmierczak H. The Role of Vitamin D in Primary Headache-from Potential Mechanism to Treatment. *Nutrients*. 2020;12(1):243. doi: <https://doi.org/10.3390/nu12010243>

53. Dell'Isola GB, Tulli E, Sica R, Vinti V, Mencaroni E, et al. The Vitamin D Role in Preventing Primary Headache in Adult and Pediatric Populations. *J. Clin. Med.* 2021;10:5983. doi: <https://doi.org/10.3390/jcm10245983>.

54. Hu C, Fan Y, Wu S, Zou Y, Qu X. Vitamin D supplementation for the treatment of migraine: A meta-analysis of randomized controlled studies. *Am J Emerg Med*. 2021 Dec;50:784-788. doi: <https://doi.org/10.1016/j.ajem.2021.07.062>

55. McDonnell SL, Baggerly KA, Baggerly CA, Aliano JL, French CB, et al. Maternal 25(OH)D concentrations \geq 40 ng/mL associated with 60% lower preterm birth risk among general obstetrical patients at an urban medical center. *PLoS One*. 2017;12(7):e0180483. doi: <https://doi.org/10.1371/journal.pone.0180483>

56. Mirzakhani H, Litonjua AA, McElrath TF, O'Connor G, Lee-Parrish A, et al. Early pregnancy vitamin D status and risk of preeclampsia. *J Clin Invest*. 2016;126(12):4702-4715. doi: <https://doi.org/10.1172/JCI89031>

57. Maltseva L.I., Vasilyeva E.N., Denisova T.G., Garifullova Yu.V. The influence of vitamin D on the course and outcomes of pregnancy in women. // *Practical medicine*. - 2020. - Vol. 18. - No. 2. - P. 12-20. [Maltseva LI, Vasilyeva EN, Denisova TG, Garifullova YuV. The influence of vitamin D on the course and outcomes of pregnancy in women. *Practical medicine*. 2020;18(2):2-20 (In Russ.)] doi: <https://doi.org/10.32000/2072-1757-2020-2-12-20>

58. Dawson-Hughes B, Staten MA, Knowler WC, Nelson J, Vickery EM, et al. Intraiatral Exposure to Vitamin D and New-Onset Diabetes Among Adults With Prediabetes: A Secondary Analysis From the Vitamin D and Type 2 Diabetes (D2D) Study. *Diabetes Care*. 2020;43(12):2916-2922. doi: <https://doi.org/10.2337/dc20-1765>

59. Karonova T.L., Andreeva A.T., Golovatyuk K.A., Bykova E.S., Skibo I.I., Grineva E.N., Shlyakhto E.V. SARS-CoV-2 infection depending on the level of vitamin D provision. // *Problems of Endocrinology*. - 2021. - Vol. 67. - No. 5. - P. 20-28.
[Karonova TL, Andreeva AT, Golovatyuk KA, Bykova ES, Skibo II, Grineva EN, Shlyakhto EV. SARS-CoV-2 morbidity depending on vitamin D status. *Problems of Endocrinology*. 2021;67(5):20-28. (In Russ.)] doi: <https://doi.org/10.14341/probl12820>

60. Holick MF. Environmental factors that influence the cutaneous production of vitamin D. *Am. J. Clin. Nutr.* 1995;61:638S-645S. doi: <https://doi.org/10.1093/ajcn/61.3.638S>

61. Kimball SM, Mirhosseini N, Holick MF. Evaluation of vitamin D3 intakes up to 15,000 international units/day and serum 25-hydroxyvitamin D concentrations up to 300 nmol/L on calcium metabolism in a community setting. *Dermatolendocrinology*. 2017;9:e1300213. doi: <https://doi.org/10.1080/19381980.2017.1300213>

62. McCullough PJ, Lehrer DS, Amend J. Daily oral dosing of vitamin D3 using 5000 TO 50,000 international units a day in long-term hospitalized patients: Insights from a seven-year experience. *J Steroid Biochem. Mol. Biol.* 2019;189:228-239. doi: <https://doi.org/10.1016/j.jsbmb.2018.12.010>

63. Rozhinskaya L.Ya., Pigarova E.A., Bagretsova A.A., Verbovoy A.F., Kondratieva N.G., Vasilevskaya O.A., Vasilyuk V.B., Manko M.V., Shunkov V.B., Grebennikova T.A. Use of high-dose cholecalciferol preparations for the treatment of vitamin D deficiency: results of an open, multicenter, comparative, randomized study. *Osteoporosis and osteopathy*. 2020;23(3):4-16.
[Rozhinskaya LY, Pigarova EA, Bagretsova AA, Verbovoy AF, Kondratyeva NG, Vasilevskaya OA, Vasilyuk VB, Manko MV, Shunkov VB, Grebennikova TA. High-dose cholecalciferol for vitamin D deficiency treatment: results of an open-label, multicenter, comparative, randomized trial. *Osteoporosis and Bone Diseases*. 2020;23(3):4-16. (In Russ.)] doi: <https://doi.org/10.14341/osteo12697>

64. Bleizygys A. Vitamin D Dosing: Basic Principles and a Brief Algorithm (2021 Update). *Nutrients*. 2021;13(12):4415. doi: <https://doi.org/10.3390/nu13124415>

Manuscript received: 14.11.2025. Approved for publication: 03.12.2025. Published online: 31.12.2025.

AUTHORS INFO

* **Ekaterina A. Pigarova**, MD, Dr. Sc. (Med.); address: 11 Dm. Ulyanova street, 117296 Moscow, Russia; ORCID: <https://orcid.org/0000-0001-6539-466X>; SPIN-code: 6912-6331; Scopus Author ID: 55655098500; Researcher ID: T-9424-2018; e-mail: pigarova.ekaterina@endocrincentr.ru

Ekaterina A. Troshina, MD, Dr. Sc. (Med.), Professor; ORCID: <https://orcid.org/0000-0002-8520-8702>; SPIN-code: 8821-8990; e-mail: troshina@inbox.ru **Fatima K. Dzgoeva**, MD, PhD; ORCID: <https://orcid.org/0000-0002-0327-4619>; SPIN-code: 9315-0722; e-mail: fatima.dzgoeva@gmail.com

Tatiana L. Karonova, MD, Dr. Sc. (Med.); ORCID <https://orcid.org/0000-0002-1547-0123>; e-mail: karonova@mail.ru

Victor E. Radzinsky, MD, Dr. Sc. (Med.); ORCID: <https://orcid.org/0000-0003-4956-0466>; SPIN-code: 4507-7510; AuthorID: 88683; Scopus: 57210580986; e-mail: radzinsky@mail.ru

Olga M. Lesnyak, MD, Dr. Sc. (Med.); ORCID: <https://orcid.org/0000-0002-0143-0614>;

SPIN-code: 6432-4188; AuthorID: 553416; e-mail: olga.m.lesnyak@yandex.ru

Yulia E. Dobrokhotova, MD, Dr. Sc. (Med.); ORCID: <https://orcid.org/0000-0002-7830-2290>; e-mail: pr.dobrohotova@mail.ru

Irina V. Kuznetsova, MD, Dr. Sc. (Med.); ORCID: <https://orcid.org/0000-0001-5541-3767>; e-mail: ms.smith.ivk@gmail.com

Igor I. Baranov, MD, Dr. Sc. (Med.); ORCID: <https://orcid.org/0000-0002-9813-2823>;

SPIN-code: 4224-0437; e-mail: I_baranov@oparina4.ru

Nina V. Zarochentseva, MD, Dr. Sci. (Medicine); ORCID: <https://orcid.org/0000-0001-6155-788X>; SPIN-code: 4737-5826; e-mail: ninazar11@mail.ru

Gyuldana R. Bayramova, MD, Dr. Sci. (Medicine); ORCID: <https://orcid.org/0000-0003-4826-661X>;

SPIN-code: 3289-5181; e-mail: bayramova@mail.ru

Olga A. Radaeva, Dr. Sci. (Medicine); ORCID: <https://orcid.org/0000-0003-1383-2474>;

e-mail: radaevamed@mail.ru

Evgeniya V. Ekusheva, MD, Dr. Sc. (Med.); ORCID: <https://orcid.org/0000-0002-3638-6094>;

e-mail: ekushevaev@mail.ru

Lyudmila A. Suplotova, MD, PhD, Professor; ORCID: <https://orcid.org/0000-0001-9253-8075>;

SPIN-code: 1212-5397; e-mail: suplotovala@mail.ru

Elena V. Matushevskaya, MD, Dr. Sc. (Med.); ORCID: <https://orcid.org/0000-0003-4583-0617>;

SPIN-code: 7430-2112; e-mail: matushevskaya@mail.ru

QUOTE:

Troshina E.A., Pigarova E.A., Karonova T.L., Dzgoeva F.Kh., Radzinsky V.E., Baranov I.I., Lesnyak O.M., Dobrokhotova

Yu.E., Kuznetsova I.V., Zarochentseva N.V., Bayramova G.R., Radaeva O.A., Ekusheva E.V., Suplotova L.A.,

Matushevskaya E.V. Optimal level of 25(OH)D in blood serum in terms of association with musculoskeletal, metabolic,

neurological, autoimmune and infectious diseases // Problems of Endocrinology. - 2025. - Vol. 71. - No. 6. - P.40-49. doi:

<https://doi.org/10.14341/probl13687>

TO CITE THIS ARTICLE:

Troshina EA, Pigarova EA, Karonova TL, Dzgoeva FKh, Radzinsky VE, Baranov II, Lesnyak OM, Dobrokhotova YuE, Kuznetsova IV, Zarochentseva NV, Bayramova GR, Radaeva OA, Ekusheva EV, Suplotova LA, Matushevskaya EV. Optimal serum 25(OH)D levels in relation to musculoskeletal, metabolic, neurological, autoimmune and infectious diseases. Problems of Endocrinology. 2025;71(6):40-49. doi: <https://doi.org/10.14341/probl13687>