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Abstract

The incidence of cancers has increased exponen-
tially worldwide since the universal COVID-19
vaccination program began at the end of 2020.
These cancers tend to present at an advanced stage,
progress rapidly, and occur in younger patients. Ad-
ditionally, some patients previously in remission
have been reported to develop uncontrolled cancer
relapses shortly after receiving a COVID-19 vac-
cination (usually a booster). The temporal associa-
tion between these cancers and COVID-19 vaccina-
tion is undeniable. These observations have given
rise to the term "turbo-cancers."

Although not a formally recognized oncologic clas-
sification, the term "turbo cancer" has gained trac-
tion among clinicians describing a pattern of unusu-
ally aggressive, rapidly progressing cancers—par-
ticularly among younger individuals and those pre-
viously in remission. In light of these reports, this
review explores plausible biological mechanisms

and available data to encourage scientific inquiry ra-
ther than premature dismissal. According to the
Vaccine Event Reporting System (VAERS), the
highest reported cancer risks involve the appendix,
followed by breast, colorectal, laryngeal, endome-
trial, and hepatic cancers. A multi-hit hypothesis of
oncogenesis—grounded in biological plausibility
and supported by safety reports filed to VAERS—
has been proposed to explain how COVID-19 vac-
cination may contribute to cancer development. In
addition, we propose that the SARS-CoV-2 spike
protein directly interferes with the fundamental
pathways causing carcinogenesis, namely metabolic
reprogramming, cancer stem cell propagation,
apoptosis resistance, metastatic potential, and al-
tered immune surveillance. While the prognosis of
these cancers is poor, an aggressive therapeutic ap-
proach using metabolic and repurposed drugs may
offer benefit.
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Introduction

The observations of oncologists from around the
world, as well as numerous published peer-re-
viewed case reports (1-12) and epidemiological data
from the US, UK, and Japan, indicate that there has
been an abrupt increase in the incidence of cancers
beginning in 2021 and continuing into 2023, follow-
ing the widespread use of the COVID-19 vaccina-
tion. (13-18) These cancers appear to be particularly
aggressive, present at a late stage, and occur in
younger patients. In addition, patients previously in
remission have been reported to develop uncon-
trolled cancer relapses soon after receiving the
COVID-19 vaccination (usually a booster). The
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temporal association between these cancers and
COVID-19 vaccination is undeniable. These obser-
vations have given rise to the term "turbo-cancers."
Given its systemic impact, COVID-19 vaccination
may promote malignancies in a wide range of organ
systems, including those where cancer is typically
rare. (16) Excess deaths from cancer have been ob-
served in both men and women, with the greatest
increase occurring among individuals aged 75 and
older. (13-18) According to Craig Paardekooper of
Kingston University's Department of Chemical En-
gineering, who analyzed the VAERS database, the
risk of cancer is greatest for the appendix, followed
by breast cancer, colorectal cancer, laryngeal can-
cer, endometrial cancer, and hepatic cancer. (16)

In the following sections, we examine how the
SARS-CoV-2 spike protein may disrupt key path-
ways of cellular regulation and immune surveil-
lance, contributing to oncogenesis.

Mechanistic Basis for Vaccine-Associated Car-
cinogenesis

COVID-19 vaccination has been demonstrated to
influence cancer risk through several biological
mechanisms. Angues and Bustos have proposed a
multi-hit hypothesis to explain SARS-CoV-2 vac-
cination and oncogenesis. (19) In 2000, Hanahan
and Weinberg proposed the six "hallmarks of can-
cer" to explain how human cells progress from nor-
malcy to neoplastic transformation. (20) Further-
more, they proposed that genomic instability was
the primary underlying mechanism driving these
changes. Based on more updated data and in con-
junction with the metabolic theory of cancer, (21-
26) we propose a revision of the pathways leading
to carcinogenesis, namely: (i) metabolic reprogram-
ming, (ii) cancer stem cell propagation, (iii) apopto-
sis resistance, (iv) angiogenesis and metastatic po-
tential, and (v) immune dysfunction with alteration
of the tumor microenvironment. In this paper, we
outline how the SARS-CoV-2 spike protein causes
carcinogenesis via disruption of these major path-
ways; furthermore, we include additional mecha-
nisms whereby spike protein may lead to carcino-
genesis. This revised model, illustrated in Figure 1,
reflects our synthesis of emerging data in conjunc-
tion with the metabolic theory of cancer.

Metabolic Reprograming

Metabolic reprogramming is a fundamental charac-
teristic of all cancer cells. (27) This shift occurs pri-
marily via the Warburg effect, a metabolic phenom-
enon in which cancer cells preferentially use glycol-

186 https://doi.org/10.71189/JIM/2025/VO1NO3A02

ysis for energy production even in oxygen-rich con-
ditions. (28, 29) Glucose is metabolized to lactate
while bypassing mitochondrial oxidative phosphor-
ylation. Excessive lactate production from glycoly-
sis results in metabolic acidosis in the tumor micro-
environment. The Warburg effect has been reported
in cancer cells associated with stereotypic chromo-
somal mutations, suggesting that metabolic repro-
gramming is a fundamental finding in all cancer
cells. (30)

The spike protein induces metabolic reprogram-
ming of cells and may thereby drive the carcino-
genic process. It causes a redox shift by impairing
mitochondrial function, leading to a reliance on gly-
colysis even in oxygen-rich conditions. (31) The
main signaling pathways associated with the War-
burg effect are PI3K/Akt/mTOR, in concert with the
transcription factors hypoxia-inducible factor (HIF-
la), p53, and c-Myc, which modulate the activity
and expression of key regulatory enzymes, includ-
ing pyruvate kinase M2 (PKM2), and 3-phospho-
inositide-dependent protein kinase-1 (PDKI1), re-
sulting in a metabolic profile favorable to cancer
cell proliferation. (27)

Oncogenic pathways such as PI3K/Akt and HIF-1a
(activated even under normoxic conditions) upreg-
ulate glycolytic enzymes (eg, hexokinase, lactate
dehydrogenase A) and glucose transporters
(GLUT1). MYC amplifies this effect by promoting
glutaminolysis, which supplements glycolysis to
support biomass synthesis. (32) Aerobic glycolysis
also supports activation of pro-inflammatory cells
such as neutrophils and M1 macrophages.

SARS-CoV-2 hijacks host glycolysis to fuel its rep-
lication; enhanced glucose uptake and hexokinase
(HK) activity supply ribose-5-phosphate for viral
RNA synthesis via the pentose phosphate pathway.
(31) HIF-1a and PI3K/Akt/MAPK pathways further
drive glycolytic enzymes, sustaining viral prolifera-
tion. (33-35) SARS-CoV-2 infection also upregu-
lates HIF-lo target genes (eg, GLUTI, LDH,
PDK1), promoting glycolysis. (36) This metabolic
shift supports viral replication and immune cell in-
filtration.

Spike protein exposure increases reactive oxygen
species (ROS) and monocyte chemoattractant pro-
tein 1 (MCP-1) in macrophages, amplifying endo-
thelial damage and HIF-1a expression. (37) It also
activates Toll-like receptor 4 (TLR4) signaling,
which stabilizes HIF-1a in macrophages, linking in-
nate immune activation to hypoxic responses. (35)

The S1 subunit of the spike protein represses potas-
sium channel tetramerization domain containing 2

J Indep Med 2025 Vol. 1 No. 3



https://doi.org/10.71189/JIM/2025/V01N03A02

(KCTD2), a gene implicated in tumor suppression
and cellular regulation, and may indirectly disrupt
c-MYC-associated pathways. (38) The spike pro-
tein's primary role in ACE2 binding and viral entry
may also indirectly influence c-MYC activity
through downstream signaling or co-regulation with
other viral proteins. (39)

Hexokinase (HK) initiates all major pathways of in-
tracellular glucose utilization. Type II HK (HK2)
couples glycolysis to oxidative phosphorylation via
interaction with mitochondria, acting as a metabolic
sensor. (40) In highly glycolytic tumors—that is,
extremely aggressive ones—mitochondrial HK?2 ac-
tivity is increased and fosters cell growth in the hy-
poxic conditions of neoplastic mass accrual by en-
hancing glycolysis, which becomes independent of
oxygen availability (the Warburg effect). (40) Spike
protein exposure increases glycolysis in endothelial
cells, consistent with HK2's role as a rate-limiting
glycolytic enzyme. (35)

Cancer Stem Cell Propagation

Cancer stem cells (CSCs) are a subset of cancer
cells that exhibit characteristics similar to those of
normal stem cells, including self-renewal and the
ability to differentiate into various cell types within
a tumor. (41-43) These cells are believed to be re-
sponsible for tumor initiation, progression, metasta-
sis, and recurrence due to their ability to evade con-
ventional treatments and regenerate tumors.

SARS-CoV-2 infection may promote cancer stem
cell development in multiple organs due to wide-
spread ACE2 receptor expression and systemic in-
flammation. (44) One review proposed that SARS-
CoV-2 infection might promote cancer stem cell de-
velopment in multiple organs by altering DNA re-
pair mechanisms and immune evasion. (44) Spike
protein has been shown to promote migration, inva-
sion, and proliferation in lung cancer cells (A549
and H1299) via TLR2-dependent pathways, in-
creasing IL-6, IL-1B, and TNF-a production. (45) In
breast cancer, spike protein binds to estrogen recep-
tors (ER), enhancing proliferation in ER-positive
cells. (46) Angiotensin II (Ang-II) may also pro-
mote cancer stem cell formation and has been linked
to carcinogenesis, metastasis, and relapse. (47) This
effect has been demonstrated in non-small cell lung
cancer (NSCLC), where Ang-II regulates tumor ag-
gressiveness and the number of cancer stem cells.
(47)

Spike protein directly binds to Wnt3a, a key ligand
in the canonical Wnt pathway. This interaction acti-
vates B-catenin signaling, facilitating viral entry into
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cells. (48) Similarly, spike protein interacts with
Notch signaling through multiple mechanisms, ex-
acerbating viral entry, inflammation, and tissue
damage in COVID-19. The SARS-CoV-2 spike
protein activates nuclear factor kB (NF-kB) signal-
ing through multiple mechanisms, driving inflam-
matory responses linked to COVID-19 pathogene-
sis. (49) Activation of the NF-xB, Wnt, and Notch
pathways are major inducers of cancer stem cell
proliferation. (50)

Apoptosis Resistance and Disruption of the p53
Tumor Suppressor Pathway

Cancer cells develop resistance to apoptosis through
interconnected mechanisms that disrupt both intrin-
sic and extrinsic cell death pathways. These adapta-
tions allow malignant cells to evade programmed
cell death, survive therapeutic interventions, and
drive tumor progression. Spike protein has been im-
plicated in p53 pathway interference and apoptosis
resistance. Spike protein S2 subunit specifically in-
teracts with proteins p53, BP1, and BRCAI. (51)
The p53 BP1 is a well-established tumor suppres-
sor; BRCAL1 is frequently mutated in both breast and
prostate cancer. Spike protein disrupts the binding
of p53 (a tumor suppressor) to MDM2 (an E3 ligase
that degrades p53), stabilizing p53 but suppressing
its transcriptional activity. Singh and Singh reported
that the S2 subunit of SARS-CoV-2 interacts with
tumor suppressor proteins p53 and BRCA, increas-
ing the risk of cancer. (51) Zhang and El-Deiry re-
ported that the SARS-CoV-2 spike S2 subunit in-
hibits p53 activation of p21(WAF1), TRAIL death
receptor DRS, and MDM2 proteins in cancer cells.
(52) In lung (H460) and other cancer cells, the spike
protein disrupts p53's ability to activate apoptosis-
related genes like p21 and TRAIL DRS, particularly
after chemotherapy exposure. (53) Altered y-H2AX
expression in spike-expressing cells suggests im-
paired DNA repair mechanisms. (53)

Angiogenesis and Metastasis

Emerging research suggests that the SARS-CoV-2
spike protein may influence cancer progression by
promoting angiogenesis and metastasis. Spike pro-
tein may promote angiogenesis by upregulating vas-
cular endothelial growth factor (VEGF). (19, 44)
This is linked to dysregulation of the renin-angio-
tensin-aldosterone system (RAAS) via ACE2
downregulation, which normally suppresses VEGF.
Spike protein activates NF-«xB, a transcription factor
that enhances pro-survival pathways and angiogen-
esis in breast cancer cells. (54) This interaction with
the renin-angiotensin system induces pro-inflam-

https://doi.org/10.71189/JIM/2025/VOIN0O3A02 187



https://doi.org/10.71189/JIM/2025/V01N03A02

matory cytokines (IL-6, TNF-a) linked to metasta-
sis.

The N-terminal domain (NTD) of the spike protein's
S1 subunit contains a galectin-fold with structural
homology to human galectin-3 (Gal-3). (55) This
domain enables the spike protein to mimic Gal-3's
sugar-binding properties. The spike protein's struc-
tural homology with human Gal-3 is linked to can-
cer aggressiveness and metastasis. Gal-3 itself
drives NF-kB-mediated inflammation, amplifying
IL-6 and TNF-a production. (44) The SARS-CoV-
2 spike protein induces lung cancer migration and
invasion in a TLR2-dependent manner. (45) In vitro
studies demonstrate that spike protein increases
MMP9 (matrix metalloproteinase) expression in
colorectal cancer cells, facilitating tissue invasion.
(45)

Immune Disruption and the Tumor Microenvi-
ronment

The tumor microenvironment (TME) is a dynamic
ecosystem that surrounds a tumor and is composed
of cancer cells, nonmalignant host cells, signaling
molecules, blood vessels, and extracellular compo-
nents. It plays a critical role in tumor progression,
metastasis, and therapy resistance by fostering re-
ciprocal interactions between cancer cells and their
surroundings. (56-60)

Spike protein exposure may induce non-specific
IgG4 antibodies, which activate inhibitory FcyRIIB
receptors on macrophages and natural killer (NK)
cells. (61) This interaction suppresses phagocytosis
of tumor cells and promotes an immunosuppressive
TME. Elevated IgG4 correlates with aggressive
cancers and poor prognosis in preclinical models.
(61) Jordakieva et al demonstrated that IgG4 in col-
orectal cancer synergizes with macrophages in
shaping an immunosuppressive microenvironment
that impairs anticancer effector cell functions. (62)
Abue et al reported that repeated COVID-19 booster
vaccinations are associated with poorer overall sur-
vival in patients with pancreatic cancer. (63) In their
analysis, high levels of IgG4 induced by vaccina-
tion, correlated with a detrimental prognosis in these
patients.

Lymphopenia with low CD4+ cells, low CD8+
cells, and low natural killer cells is exceedingly
common after the COVID-19 vaccines. (64-67)
SARS-CoV-2 spike proteins may bind to lympho-
cytes via ACE2-independent pathways, potentially
triggering apoptosis. (68, 69) Repeated antigen ex-
posure from vaccine boosters may lead to upregu-
lated PD-1 expression on T cells, particularly in
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those with preexisting lymphopenia. (67) Lympho-
penia is closely linked to impaired immune surveil-
lance. Lymphocyte depletion undermines the body's
ability to detect and eliminate malignant cancer
cells, increasing susceptibility to cancer progression
and mortality.

The SARS-CoV-2 spike protein may exacerbate
myeloid-derived suppressor cell (MDSC)-mediated
immunosuppression in the TME by inhibition of the
p53 pathway. (53) Spike protein may enhance
MDSC immunosuppression indirectly by promot-
ing pro-inflammatory cytokines (eg, IL-6, IL-1p),
which drive MDSC expansion and activation. (70)
The SARS-CoV-2 spike protein also influences
macrophage behavior, which may extrapolate to tu-
mor-associated macrophages (TAMs) in the TME.
Spike protein downregulates type I interferons (IF-
NAs) and protocadherins within 5 hours of expo-
sure. (71) This early suppression of interferon sig-
naling could impair antitumor immunity, as IFNAs
are vital for activating immune cells against tumors.

Additional Proposed Mechanisms of Carcino-
genesis

As previously proposed by Angues and Bustos, (19)
several additional mechanisms may contribute to
vaccine-related carcinogenesis, including:

o EBYV (Epstein-Barr virus). Chronic EBV viral
infection (and other herpes viruses) may be re-
activated following the mRNA vaccination. (72,
73) EBV is an oncogenic virus that can convert
normal cells into cancer cells by modulating the
central metabolic pathways or hampering ge-
nomic integrity mechanisms, consequently in-
hibiting the apoptotic machinery and/or enhanc-
ing cell proliferation. (74)

e SV40 DNA sequences. SV40 (a known onco-
genic virus) has been historically linked to polio
vaccines. The detection of SV40 sequences in
the COVID-19 vaccine vials raises the possibil-
ity of oncogenic potential. (75-78)

e Nl-methyl-pseudouridine. Evidence from
melanoma models suggests that the inclusion of
N1-methyl-pseudouridine (m1¥) in mRNA
vaccines may promote cancer growth and me-
tastasis, whereas non-modified mRNA vaccines
induce opposite effects, suggesting that
COVID-19 mRNA vaccines could aid cancer
development. (79)

e Lipid nanoparticles (LNPs). LNPs used in
mRNA vaccines can accumulate in tumors via
the enhanced permeability and retention (EPR)
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effect.

e Retrotransposon activation. Spike protein
may unsilence retrotransposable elements, con-
tributing to genomic instability.

e Reverse transcription. Potential reverse-tran-
scription and genomic integration of foreign
RNA are sources of genomic instability. A study
by Acevedo-Whitehouse and Bruno discusses
the possibility that parts of the SARS-CoV-2 ge-
nome might undergo reverse transcription and
genomic integration within infected cells, lead-
ing to persistent transcription of the integrated
sequences. (80)

e Codon optimization of mRNA. Codon optimi-
zation of COVID-19 vaccines may lead to
dysregulation of the RNA G-quadruplex (G4)-
protein binding system, altering the transla-
tional regulation of cellular microRNAs. (19)

Despite this overwhelming body of evidence, main-
stream medicine continues to perpetuate the false
narrative that turbo cancers are "biologically im-
plausible and there is no preclinical, nor clinical, ev-
idence to support it." (81)

Risk Stratification and Preventive Measures

The concept of COVID-19 vaccine-induced turbo
cancer is considered an anti-vaccination conspiracy
theory by mainstream medicine; however, the over-
whelming body of published evidence cited here
suggests otherwise. As a result, risk factors for de-
veloping turbo cancers have not been well studied.
However, patients with a strong family history of
cancer, those in remission from prior malignancies,
individuals over the age of 75 years, and patients
who have received at least one booster dose appear
to be at increased risk. Based on the use of the fol-
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lowing nutraceuticals, we have developed the
ROOTH4 protocol for cancer prophylaxis—a preven-
tive strategy comprising EGCG (green tea extract),
curcumin, vitamin D, and omega-3 fatty acids (man-
uscript in press). This protocol should be considered
for patients identified as high-risk.

Conclusion

The emergence of turbo cancers following COVID-
19 vaccination—marked by unusually aggressive
behavior, relapse in remission cases, and occurrence
in younger individuals—represents a concerning
clinical pattern that warrants urgent scientific scru-
tiny. While mainstream discourse has largely dis-
missed these cancers as coincidental or biologically
implausible, the mechanistic data presented in this
review suggest otherwise. The SARS-CoV-2 spike
protein may interfere with core regulatory pathways
of carcinogenesis, including metabolic reprogram-
ming, immune surveillance, apoptosis resistance,
and stem cell proliferation.

Additional mechanisms such as EBV reactivation,
SV40 DNA sequences, reverse transcription, and
codon optimization may further contribute to ge-
nomic instability and oncogenic transformation.
Given the consistent temporal association and bio-
logical plausibility, it is imperative to investigate
these phenomena with objectivity and scientific ri-
gor. Proactive risk stratification, enhanced postvac-
cination surveillance, and early, targeted prophylac-
tic strategies, such as the ROOT4 protocol, may
help mitigate the potential impact of these malig-
nancies.
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Figure 1. Proposed mechanisms by which the SARS-CoV-2 spike protein may promote carcinogenesis
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Legend: These include metabolic reprogramming, cancer stem cell propagation, apoptosis resistance, angio-
genesis and metastatic potential, and immune dysfunction resulting in disruption of the tumor microenviron-
ment (TME).
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