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The incidence of cancers has increased exponen-
tially worldwide since the universal COVID-19 

vaccination program began at the end of 2020. 

These cancers tend to present at an advanced stage, 

progress rapidly, and occur in younger patients. Ad-
ditionally, some patients previously in remission 

have been reported to develop uncontrolled cancer 

relapses shortly after receiving a COVID-19 vac-
cination (usually a booster). The temporal associa-

tion between these cancers and COVID-19 vaccina-

tion is undeniable. These observations have given 

rise to the term "turbo-cancers." 

Although not a formally recognized oncologic clas-

sification, the term "turbo cancer" has gained trac-

tion among clinicians describing a pattern of unusu-
ally aggressive, rapidly progressing cancers—par-

ticularly among younger individuals and those pre-

viously in remission. In light of these reports, this 
review explores plausible biological mechanisms        

. 

and available data to encourage scientific inquiry ra-
ther than premature dismissal. According to the 

Vaccine Event Reporting System (VAERS), the 

highest reported cancer risks involve the appendix, 

followed by breast, colorectal, laryngeal, endome-
trial, and hepatic cancers. A multi-hit hypothesis of 

oncogenesis—grounded in biological plausibility 

and supported by safety reports filed to VAERS—
has been proposed to explain how COVID-19 vac-

cination may contribute to cancer development. In 

addition, we propose that the SARS-CoV-2 spike 
protein directly interferes with the fundamental 

pathways causing carcinogenesis, namely metabolic 

reprogramming, cancer stem cell propagation, 

apoptosis resistance, metastatic potential, and al-
tered immune surveillance. While the prognosis of 

these cancers is poor, an aggressive therapeutic ap-

proach using metabolic and repurposed drugs may 

offer benefit. 
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Introduction 

The observations of oncologists from around the 

world, as well as numerous published peer-re-

viewed case reports (1-12) and epidemiological data 

from the US, UK, and Japan, indicate that there has 
been an abrupt increase in the incidence of cancers 

beginning in 2021 and continuing into 2023, follow-

ing the widespread use of the COVID-19 vaccina-
tion. (13-18) These cancers appear to be particularly 

aggressive, present at a late stage, and occur in 

younger patients. In addition, patients previously in 
remission have been reported to develop uncon-

trolled cancer relapses soon after receiving the 

COVID-19 vaccination (usually a booster). The            

. 
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temporal association between these cancers and 

COVID-19 vaccination is undeniable. These obser-
vations have given rise to the term "turbo-cancers." 

Given its systemic impact, COVID-19 vaccination 

may promote malignancies in a wide range of organ 
systems, including those where cancer is typically 

rare. (16) Excess deaths from cancer have been ob-

served in both men and women, with the greatest 

increase occurring among individuals aged 75 and 
older. (13-18) According to Craig Paardekooper of 

Kingston University's Department of Chemical En-

gineering, who analyzed the VAERS database, the 
risk of cancer is greatest for the appendix, followed 

by breast cancer, colorectal cancer, laryngeal can-

cer, endometrial cancer, and hepatic cancer. (16) 

In the following sections, we examine how the 
SARS-CoV-2 spike protein may disrupt key path-

ways of cellular regulation and immune surveil-

lance, contributing to oncogenesis. 

 

Mechanistic Basis for Vaccine-Associated Car-

cinogenesis 

COVID-19 vaccination has been demonstrated to 

influence cancer risk through several biological 

mechanisms. Angues and Bustos have proposed a 

multi-hit hypothesis to explain SARS-CoV-2 vac-
cination and oncogenesis. (19) In 2000, Hanahan 

and Weinberg proposed the six "hallmarks of can-

cer" to explain how human cells progress from nor-
malcy to neoplastic transformation. (20) Further-

more, they proposed that genomic instability was 

the primary underlying mechanism driving these 
changes. Based on more updated data and in con-

junction with the metabolic theory of cancer, (21-

26) we propose a revision of the pathways leading 

to carcinogenesis, namely: (i) metabolic reprogram-
ming, (ii) cancer stem cell propagation, (iii) apopto-

sis resistance, (iv) angiogenesis and metastatic po-

tential, and (v) immune dysfunction with alteration 
of the tumor microenvironment. In this paper, we 

outline how the SARS-CoV-2 spike protein causes 

carcinogenesis via disruption of these major path-

ways; furthermore, we include additional mecha-
nisms whereby spike protein may lead to carcino-

genesis. This revised model, illustrated in Figure 1, 

reflects our synthesis of emerging data in conjunc-
tion with the metabolic theory of cancer. 

 

Metabolic Reprograming 

Metabolic reprogramming is a fundamental charac-

teristic of all cancer cells. (27) This shift occurs pri-

marily via the Warburg effect, a metabolic phenom-

enon in which cancer cells preferentially use glycol- 

ysis for energy production even in oxygen-rich con-

ditions. (28, 29) Glucose is metabolized to lactate 
while bypassing mitochondrial oxidative phosphor-

ylation. Excessive lactate production from glycoly-

sis results in metabolic acidosis in the tumor micro-
environment. The Warburg effect has been reported 

in cancer cells associated with stereotypic chromo-

somal mutations, suggesting that metabolic repro-

gramming is a fundamental finding in all cancer 

cells. (30) 

The spike protein induces metabolic reprogram-

ming of cells and may thereby drive the carcino-
genic process. It causes a redox shift by impairing 

mitochondrial function, leading to a reliance on gly-

colysis even in oxygen-rich conditions. (31) The 

main signaling pathways associated with the War-
burg effect are PI3K/Akt/mTOR, in concert with the 

transcription factors hypoxia-inducible factor (HIF-

1α), p53, and c-Myc, which modulate the activity 
and expression of key regulatory enzymes, includ-

ing pyruvate kinase M2 (PKM2), and 3-phospho-

inositide-dependent protein kinase-1 (PDK1), re-
sulting in a metabolic profile favorable to cancer 

cell proliferation. (27) 

Oncogenic pathways such as PI3K/Akt and HIF-1α 

(activated even under normoxic conditions) upreg-
ulate glycolytic enzymes (eg, hexokinase, lactate 

dehydrogenase A) and glucose transporters 

(GLUT1). MYC amplifies this effect by promoting 
glutaminolysis, which supplements glycolysis to 

support biomass synthesis. (32) Aerobic glycolysis 

also supports activation of pro-inflammatory cells 

such as neutrophils and M1 macrophages. 

SARS-CoV-2 hijacks host glycolysis to fuel its rep-

lication; enhanced glucose uptake and hexokinase 

(HK) activity supply ribose-5-phosphate for viral 
RNA synthesis via the pentose phosphate pathway. 

(31) HIF-1α and PI3K/Akt/MAPK pathways further 

drive glycolytic enzymes, sustaining viral prolifera-
tion. (33-35) SARS-CoV-2 infection also upregu-

lates HIF-1α target genes (eg, GLUT1, LDH, 

PDK1), promoting glycolysis. (36) This metabolic 

shift supports viral replication and immune cell in-

filtration. 

Spike protein exposure increases reactive oxygen 

species (ROS) and monocyte chemoattractant pro-
tein 1 (MCP-1) in macrophages, amplifying endo-

thelial damage and HIF-1α expression. (37)  It also 

activates Toll-like receptor 4 (TLR4) signaling, 
which stabilizes HIF-1α in macrophages, linking in-

nate immune activation to hypoxic responses. (35) 

The S1 subunit of the spike protein represses potas-

sium channel tetramerization domain containing 2    

. 
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(KCTD2), a gene implicated in tumor suppression 

and cellular regulation, and may indirectly disrupt 
c-MYC-associated pathways. (38) The spike pro-

tein's primary role in ACE2 binding and viral entry 

may also indirectly influence c-MYC activity 
through downstream signaling or co-regulation with 

other viral proteins. (39) 

Hexokinase (HK) initiates all major pathways of in-

tracellular glucose utilization. Type II HK (HK2) 
couples glycolysis to oxidative phosphorylation via 

interaction with mitochondria, acting as a metabolic 

sensor. (40) In highly glycolytic tumors—that is, 
extremely aggressive ones—mitochondrial HK2 ac-

tivity is increased and fosters cell growth in the hy-

poxic conditions of neoplastic mass accrual by en-

hancing glycolysis, which becomes independent of 
oxygen availability (the Warburg effect). (40) Spike 

protein exposure increases glycolysis in endothelial 

cells, consistent with HK2's role as a rate-limiting 
glycolytic enzyme. (35) 

 

Cancer Stem Cell Propagation 

Cancer stem cells (CSCs) are a subset of cancer 

cells that exhibit characteristics similar to those of 

normal stem cells, including self-renewal and the 

ability to differentiate into various cell types within 
a tumor. (41-43) These cells are believed to be re-

sponsible for tumor initiation, progression, metasta-

sis, and recurrence due to their ability to evade con-

ventional treatments and regenerate tumors. 

SARS-CoV-2 infection may promote cancer stem 

cell development in multiple organs due to wide-
spread ACE2 receptor expression and systemic in-

flammation. (44) One review proposed that SARS-

CoV-2 infection might promote cancer stem cell de-

velopment in multiple organs by altering DNA re-
pair mechanisms and immune evasion. (44) Spike 

protein has been shown to promote migration, inva-

sion, and proliferation in lung cancer cells (A549 
and H1299) via TLR2-dependent pathways, in-

creasing IL-6, IL-1β, and TNF-α production. (45) In 

breast cancer, spike protein binds to estrogen recep-

tors (ER), enhancing proliferation in ER-positive 
cells. (46) Angiotensin II (Ang-II) may also pro-

mote cancer stem cell formation and has been linked 

to carcinogenesis, metastasis, and relapse. (47) This 
effect has been demonstrated in non-small cell lung 

cancer (NSCLC), where Ang-II regulates tumor ag-

gressiveness and the number of cancer stem cells. 

(47) 

Spike protein directly binds to Wnt3a, a key ligand 

in the canonical Wnt pathway. This interaction acti-

vates β-catenin signaling, facilitating viral entry into  
 

cells. (48) Similarly, spike protein interacts with 

Notch signaling through multiple mechanisms, ex-
acerbating viral entry, inflammation, and tissue 

damage in COVID-19. The SARS-CoV-2 spike 

protein activates nuclear factor κB (NF-κB) signal-
ing through multiple mechanisms, driving inflam-

matory responses linked to COVID-19 pathogene-

sis. (49) Activation of the NF-κB, Wnt, and Notch 

pathways are major inducers of cancer stem cell 
proliferation. (50) 

 

Apoptosis Resistance and Disruption of the p53 

Tumor Suppressor Pathway 

Cancer cells develop resistance to apoptosis through 

interconnected mechanisms that disrupt both intrin-

sic and extrinsic cell death pathways. These adapta-
tions allow malignant cells to evade programmed 

cell death, survive therapeutic interventions, and 

drive tumor progression. Spike protein has been im-
plicated in p53 pathway interference and apoptosis 

resistance. Spike protein S2 subunit specifically in-

teracts with proteins p53, BP1, and BRCA1. (51) 
The p53 BP1 is a well-established tumor suppres-

sor; BRCA1 is frequently mutated in both breast and 

prostate cancer. Spike protein disrupts the binding 

of p53 (a tumor suppressor) to MDM2 (an E3 ligase 
that degrades p53), stabilizing p53 but suppressing 

its transcriptional activity. Singh and Singh reported 

that the S2 subunit of SARS-CoV-2 interacts with 
tumor suppressor proteins p53 and BRCA, increas-

ing the risk of cancer. (51) Zhang and El-Deiry re-

ported that the SARS-CoV-2 spike S2 subunit in-
hibits p53 activation of p21(WAF1), TRAIL death 

receptor DR5, and MDM2 proteins in cancer cells. 

(52) In lung (H460) and other cancer cells, the spike 

protein disrupts p53's ability to activate apoptosis-
related genes like p21 and TRAIL DR5, particularly 

after chemotherapy exposure. (53) Altered γ-H2AX 

expression in spike-expressing cells suggests im-
paired DNA repair mechanisms. (53) 

 

Angiogenesis and Metastasis 

Emerging research suggests that the SARS-CoV-2 
spike protein may influence cancer progression by 

promoting angiogenesis and metastasis. Spike pro-

tein may promote angiogenesis by upregulating vas-
cular endothelial growth factor (VEGF). (19, 44) 

This is linked to dysregulation of the renin-angio-

tensin-aldosterone system (RAAS) via ACE2 
downregulation, which normally suppresses VEGF. 

Spike protein activates NF-κB, a transcription factor 

that enhances pro-survival pathways and angiogen-

esis in breast cancer cells. (54) This interaction with 
the renin-angiotensin system induces pro-inflam-           

. 
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matory cytokines (IL-6, TNF-α) linked to metasta-

sis. 

The N-terminal domain (NTD) of the spike protein's 

S1 subunit contains a galectin-fold with structural 

homology to human galectin-3 (Gal-3). (55) This 
domain enables the spike protein to mimic Gal-3's 

sugar-binding properties. The spike protein's struc-

tural homology with human Gal-3 is linked to can-

cer aggressiveness and metastasis. Gal-3 itself 
drives NF-κB-mediated inflammation, amplifying 

IL-6 and TNF-α production. (44) The SARS-CoV-

2 spike protein induces lung cancer migration and 
invasion in a TLR2-dependent manner. (45) In vitro 

studies demonstrate that spike protein increases 

MMP9 (matrix metalloproteinase) expression in 

colorectal cancer cells, facilitating tissue invasion. 

(45) 

 

Immune Disruption and the Tumor Microenvi-

ronment 

The tumor microenvironment (TME) is a dynamic 

ecosystem that surrounds a tumor and is composed 

of cancer cells, nonmalignant host cells, signaling 
molecules, blood vessels, and extracellular compo-

nents. It plays a critical role in tumor progression, 

metastasis, and therapy resistance by fostering re-

ciprocal interactions between cancer cells and their 

surroundings. (56-60) 

Spike protein exposure may induce non-specific 

IgG4 antibodies, which activate inhibitory FcγRIIB 
receptors on macrophages and natural killer (NK) 

cells. (61) This interaction suppresses phagocytosis 

of tumor cells and promotes an immunosuppressive 

TME. Elevated IgG4 correlates with aggressive 
cancers and poor prognosis in preclinical models. 

(61) Jordakieva et al demonstrated that IgG4 in col-

orectal cancer synergizes with macrophages in 
shaping an immunosuppressive microenvironment 

that impairs anticancer effector cell functions. (62) 

Abue et al reported that repeated COVID-19 booster 
vaccinations are associated with poorer overall sur-

vival in patients with pancreatic cancer. (63) In their 

analysis, high levels of IgG4 induced by vaccina-

tion, correlated with a detrimental prognosis in these 

patients. 

Lymphopenia with low CD4+ cells, low CD8+ 

cells, and low natural killer cells is exceedingly 
common after the COVID-19 vaccines. (64-67) 

SARS-CoV-2 spike proteins may bind to lympho-

cytes via ACE2-independent pathways, potentially 
triggering apoptosis. (68, 69) Repeated antigen ex-

posure from vaccine boosters may lead to upregu-

lated PD-1 expression on T cells, particularly in          

. 

those with preexisting lymphopenia. (67) Lympho-

penia is closely linked to impaired immune surveil-
lance. Lymphocyte depletion undermines the body's 

ability to detect and eliminate malignant cancer 

cells, increasing susceptibility to cancer progression 

and mortality. 

The SARS-CoV-2 spike protein may exacerbate 

myeloid-derived suppressor cell (MDSC)-mediated 

immunosuppression in the TME by inhibition of the 
p53 pathway. (53) Spike protein may enhance 

MDSC immunosuppression indirectly by promot-

ing pro-inflammatory cytokines (eg, IL-6, IL-1β), 
which drive MDSC expansion and activation. (70) 

The SARS-CoV-2 spike protein also influences 

macrophage behavior, which may extrapolate to tu-

mor-associated macrophages (TAMs) in the TME. 
Spike protein downregulates type I interferons (IF-

NAs) and protocadherins within 5 hours of expo-

sure. (71) This early suppression of interferon sig-
naling could impair antitumor immunity, as IFNAs 

are vital for activating immune cells against tumors. 

 
Additional Proposed Mechanisms of Carcino-

genesis 

As previously proposed by Angues and Bustos, (19) 

several additional mechanisms may contribute to 

vaccine-related carcinogenesis, including: 

• EBV (Epstein-Barr virus). Chronic EBV viral 

infection (and other herpes viruses) may be re-

activated following the mRNA vaccination. (72, 
73) EBV is an oncogenic virus that can convert 

normal cells into cancer cells by modulating the 

central metabolic pathways or hampering ge-
nomic integrity mechanisms, consequently in-

hibiting the apoptotic machinery and/or enhanc-

ing cell proliferation. (74) 

• SV40 DNA sequences. SV40 (a known onco-

genic virus) has been historically linked to polio 
vaccines. The detection of SV40 sequences in 

the COVID-19 vaccine vials raises the possibil-

ity of oncogenic potential. (75-78) 

• N1-methyl-pseudouridine. Evidence from 
melanoma models suggests that the inclusion of 

N1-methyl-pseudouridine (m1Ψ) in mRNA 

vaccines may promote cancer growth and me-
tastasis, whereas non-modified mRNA vaccines 

induce opposite effects, suggesting that 

COVID-19 mRNA vaccines could aid cancer 

development. (79) 

• Lipid nanoparticles (LNPs). LNPs used in 
mRNA vaccines can accumulate in tumors via 

the enhanced permeability and retention (EPR)  

. 
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effect. 

• Retrotransposon activation. Spike protein 

may unsilence retrotransposable elements, con-

tributing to genomic instability. 

• Reverse transcription. Potential reverse-tran-

scription and genomic integration of foreign 

RNA are sources of genomic instability. A study 
by Acevedo-Whitehouse and Bruno discusses 

the possibility that parts of the SARS-CoV-2 ge-

nome might undergo reverse transcription and 

genomic integration within infected cells, lead-
ing to persistent transcription of the integrated 

sequences. (80) 

• Codon optimization of mRNA. Codon optimi-

zation of COVID-19 vaccines may lead to 
dysregulation of the RNA G-quadruplex (G4)-

protein binding system, altering the transla-

tional regulation of cellular microRNAs. (19) 

Despite this overwhelming body of evidence, main-

stream medicine continues to perpetuate the false 

narrative that turbo cancers are "biologically im-

plausible and there is no preclinical, nor clinical, ev-
idence to support it." (81) 
 

Risk Stratification and Preventive Measures 

The concept of COVID-19 vaccine-induced turbo 

cancer is considered an anti-vaccination conspiracy 
theory by mainstream medicine; however, the over-

whelming body of published evidence cited here 

suggests otherwise. As a result, risk factors for de-
veloping turbo cancers have not been well studied. 

However, patients with a strong family history of 

cancer, those in remission from prior malignancies, 
individuals over the age of 75 years, and patients 

who have received at least one booster dose appear 

to be at increased risk. Based on the use of the fol-   

. 

lowing nutraceuticals, we have developed the 

ROOT4 protocol for cancer prophylaxis—a preven-
tive strategy comprising EGCG (green tea extract), 

curcumin, vitamin D, and omega-3 fatty acids (man-

uscript in press). This protocol should be considered 
for patients identified as high-risk. 

 

Conclusion 

The emergence of turbo cancers following COVID-

19 vaccination—marked by unusually aggressive 
behavior, relapse in remission cases, and occurrence 

in younger individuals—represents a concerning 

clinical pattern that warrants urgent scientific scru-
tiny. While mainstream discourse has largely dis-

missed these cancers as coincidental or biologically 

implausible, the mechanistic data presented in this 

review suggest otherwise. The SARS-CoV-2 spike 
protein may interfere with core regulatory pathways 

of carcinogenesis, including metabolic reprogram-

ming, immune surveillance, apoptosis resistance, 

and stem cell proliferation. 

Additional mechanisms such as EBV reactivation, 

SV40 DNA sequences, reverse transcription, and 

codon optimization may further contribute to ge-
nomic instability and oncogenic transformation. 

Given the consistent temporal association and bio-

logical plausibility, it is imperative to investigate 
these phenomena with objectivity and scientific ri-

gor. Proactive risk stratification, enhanced postvac-

cination surveillance, and early, targeted prophylac-
tic strategies, such as the ROOT4 protocol, may 

help mitigate the potential impact of these malig-

nancies. 
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Figure 1. Proposed mechanisms by which the SARS-CoV-2 spike protein may promote carcinogenesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: These include metabolic reprogramming, cancer stem cell propagation, apoptosis resistance, angio-

genesis and metastatic potential, and immune dysfunction resulting in disruption of the tumor microenviron-

ment (TME). 
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