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ARTICLE INFO ABSTRACT

Epidemiological evidence concerning the association between vitamin D receptor (VDR) polymorphisms, in-
cluding rs2228570, rs731236, rs7975232, rs1544410 and Parkinson’s disease (PD) risk is inconsistent. A meta-
analysis was performed to evaluate these associations via searching PubMed and EMBASE databases up to Jan 4,
2019. Odds ratio (OR) with 95% confidence interval (CI) were applied to assess the strength of these associa-
tions. 6 studies with 1391 PD cases and 1570 controls for rs2228570, 7 studies with 1881 PD cases and 2135
controls for rs731236, 5 studies with 1298 PD cases and 1536 controls for rs7975232, and 6 studies with 932 PD
cases and 1377 controls for rs1544410 were included in this meta-analysis. Significant associations between
rs2228570 and PD risk were found in allelic, dominant, and additive models but not in recessive model.
Stratified study revealed that rs2228570 was associated with PD susceptibility in Asian population, while no
significant association was observed in Caucasian population. Sensitivity analysis showed stable results for
rs2228570 and no publication bias existed. Rs731236 was associated with increased PD risk in dominant model,
however, this result was unstable. No significant association was found between rs7975232 or rs1544410 and
PD.
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1. Introduction 1s2228570, rs731236, 1s7975232, rs1544410 and PD susceptibility to
provide more reliable analysis.

Parkinson’s disease (PD) is the second most frequent neurodegen-
erative disorder. The pathogenic characteristics includes the presence
of Lewy bodies and the loss of dopaminergic cells in the substantia
nigra, but the underling mechanisms remain unclear. The motor

symptom of PD includes tremor, rigidity, flexed posture, bradykinesia,

2. Materials and methods

2.1. Literature search

and postural instability [11]. Environmental and genetic factors may
contribute to the pathogenesis of PD [19].

Vitamin D deficiency was associated with increased PD risk [17].
The vitamin D receptor (VDR) acts as mediator of vitamin D’s biological
actions. VDR is enriched in dopaminergic neurons within the substantia
nigra, and knockout of VDR gene resulted motor impairments [2].
Several studies explored the association between VDR polymorphisms
and PD susceptibility including rs2228570, rs731236, rs7975232, and
rs1544410 [3,20]. However, these results were controversial
[4-7,27,28]. Three published meta-analyses [12,13,20] evaluated these
associations, however, all the three results were based on limited stu-
dies.

With the increasing evidence, we performed this meta-analysis to
investigate the association between VDR polymorphisms including
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The literary searches in PubMed and EMBASE databases up to Jan 4,
2019 including the following keywords: ‘vitamin D receptor OR VDR’,
‘polymorphism OR variant OR mutation’, and ‘Parkinson’s disease OR
PD’.

2.2. Inclusion and exclusion criteria

The inclusion criteria include: Case-control study with sufficient
genotype information investigating VDR rs2228570 (FokI), rs731236
(Taql), rs7975232 (Apal) or rs1544410 (Bsm) polymorphism and PD
risk. Studies exclusion criteria include: (1) Reviews, case reports, and
editorials; (2) Family-based study; (3) Study with insufficient genotype
information; (4) Genotype distribution of controls not in Hardy-
Weinberg equilibrium (HWE).
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Fig. 1. Flow chart of study selection process in the current meta-analysis. (A) rs2228570. (B) rs731236. (C) rs7975232. (D) rs1544410.

Table 1
Characteristics of the included studies in this meta-analysis.

SNP Author Year Country Ethnicity Method Age Sample size
Case Control Case Control
152228570 Tanaka K 2017 Japan Asian TagMan 68.4 = 8.7 66.6 = 8.5 229 357
Gezen-Ak D 2016 Turkey Caucasian TagMan 61.7 = 11.4 64.6 = 10.3 382 237
Kang SY 2016 Korea Asian TagMan 69.5 + 9.7 66.7 + 8.8 137 163
Gatto NM 2015 USA Caucasian TagMan 70.9 = 10.5 67.6 = 12.0 283 422
Torok R 2013 Hungary Caucasian PCR-RFLP 66.4 = 9.3 64.0 = 8.2 100 109
Han X 2012 China Asian PCR-RFLP 709 = 6.1 69.4 + 9.7 260 282
15731236 Tanaka K 2017 Japan Asian TagMan 68.4 = 8.7 66.6 = 8.5 229 357
Gezen-Ak D 2016 Turkey Caucasian TagMan 61.7 = 11.4 64.6 = 10.3 381 240
Gatto NM 2015 USA Caucasian TagMan 70.9 = 10.5 67.6 = 12.0 282 421
Petersen MS 2014 Danmark Caucasian TaqMan 74.5 = 9.9 75.0 = 9.9 121 234
Torok R 2013 Hungary Caucasian PCR-RFLP 66.4 = 9.3 64.0 = 8.2 100 109
LvZ 2013 China Asian PCR-RFLP 54.7 + 11.9 52.0 + 17.9 483 489
Liu HX 2013 China Asian PCR-RFLP 66.18 + 10.77 71.8 = 6.1 285 285
157975232 Tanaka K 2017 Japan Asian TagMan 68.4 = 8.7 66.6 = 8.5 229 357
Gezen-Ak D 2016 Turkey Caucasian TagMan 61.7 = 11.4 64.6 = 10.3 381 241
Gatto NM 2015 USA Caucasian TagMan 70.9 = 10.5 67.6 = 12.0 282 419
Petersen MS 2014 Danmark Caucasian TagMan 74.5 = 9.9 75.0 = 9.9 121 234
Liu HX 2013 China Asian PCR-RFLP 66.18 + 10.77 71.8 = 6.1 285 285
151544410 Tanaka K 2017 Japan Asian TagMan 68.4 = 8.7 66.6 = 8.5 229 357
Kang SY 2016 Korea Asian TagMan 69.5 = 9.7 66.7 = 8.8 137 163
Petersen MS 2014 Danmark Caucasian TaqMan 74.5 = 9.9 75.0 = 9.9 121 235
Torok R 2013 Hungary Caucasian PCR-RFLP 66.4 = 9.3 64.0 = 8.2 100 109
Han X 2012 China Asian PCR-RFLP 709 = 6.1 69.4 = 9.7 260 282
Kim JS 2005 Korea Asian PCR-RFLP 64.55 + 8.86 62.05 + 10.44 85 231

2.3. Data extraction

Pg > 0.1 or I? < 50%. Alternatively, the random-effect model was ap-
plied. The stability of the results was assessed by sensitivity analysis.
First author’s surname, published year, Country, ethnicity, geno- Publication bias was determined by Begger’s and Egger’s tests.
typing method, age, male ratio, sample size, and genotype information P < 0.05 was considered as statistically significant.
were extracted.
3. Results
2.4. Statistical analysis
3.1. Characteristics of eligible studies
All data were analyzed with Stata 12.0 software (Stata Coporation,
TX, USA). The strength of this association was evaluated by pooled OR The study selection process was shown in Fig. 1. 4 reviews
and 95% CI in four genetic models, including allelic, dominant, re- [12,13,20,29], and 4 studies without sufficient genotype information
cessive, and additive models. The fixed-effect model was adopted if [1,3,25,26] were excluded. Eventually, 6 studies with 1391 PD cases
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Table 2
Genotype frequencies of VDR SNPs in the included studies.
SNP Author Case Control MAF HWE
FF Ff ff FF Ff ff Case Control

152228570 Tanaka K 108 98 23 141 169 47 31.44% 36.83% 0.744
Gezen-Ak D 181 164 37 105 107 25 31.15% 33.12% 0.769
Kang SY 46 63 28 48 79 36 43.43% 46.32% 0.746
Gatto NM 109 126 48 153 203 66 39.22% 39.69% 0.922
Torok R 42 48 10 35 49 25 34.00% 45.41% 0.33
Han X 114 124 22 109 126 47 32.31% 39.01% 0.306

rs731236 Tanaka K 178 47 4 284 67 6 12.01% 11.06% 0.381
Gezen-Ak D 154 182 45 109 98 33 35.70% 34.17% 0.153
Gatto NM 77 162 43 153 213 55 43.97% 38.36% 0.152
Petersen MS 47 54 20 81 119 34 38.84% 39.96% 0.36
Torok R 35 48 17 47 46 16 41.00% 35.78% 0.394
Lvz 437 46 0 446 52 0 4.76% 5.32% 0.219
Liu HX 252 33 0 255 30 0 5.79% 5.26% 0.348

1s7975232 Tanaka K 18 102 109 32 156 169 69.87% 69.19% 0.638
Gezen-Ak D 130 194 57 101 115 25 40.42% 34.23% 0.354
Gatto NM 78 158 46 105 210 104 44.33% 49.88% 0.961
Petersen MS 34 62 25 58 120 56 46.28% 49.57% 0.694
Liu HX 130 135 20 149 112 24 30.70% 28.07% 0.651

151544410 Tanaka K 178 45 6 291 60 6 12.45% 10.08% 0.167
Kang SY 123 13 1 145 17 1 5.47% 5.83% 0.524
Petersen MS 48 53 20 84 117 34 38.43% 39.36% 0.51
Torok R 27 49 24 27 57 25 48.50% 49.08% 0.629
Han X 222 34 4 244 36 2 8.08% 7.09% 0.599
Kim JS 72 11 2 168 60 3 8.82% 14.29% 0.357

Note: For rs2228570, FF was GG, Ff was GA, ff was AA. For rs731236, FF was AA, Ff was AG, ff was GG. For rs7975232, FF was AA, Ff was AC, ff was CC. For
rs1544410, FF was CC, Ff was CT, ff was TT.

Table 3
Meta-analysis of VDR polymorphisms and risk of PD.

SNP Genetic comparison  Pg 2 OR 95% CI Pz

152228570 Overall
Avs G 0.315 15.5% 0.843 0.757,0.939 0.002
AA + GA vs GG 0.890 0.0% 0.819 0.705, 0.951 0.009
AA vs GA + GG 0.065 51.9% 0.739 0.537,1.017 0.063
AA vs GG 0.118 43.1% 0.704 0.558, 0.887 0.003
Asian
AvsG 0.698 0.0% 0.793 0.679, 0.926 0.003
AA + GA vs GG 0.891 0.0% 0.778 0.628, 0.965 0.022
AA vs GA + GG 0.213 35.3% 0.673 0.457,0.992 0.046
AA vs GG 0.382  0.0% 0.603 0.430, 0.846 0.003
Caucasian
Avs G 0.133 50.3% 0.864 0.690,1.082 0.203
AA + GA vs GG 0.591 0.0% 0.858 0.696, 1.057 0.151
AA vs GA + GG 0.058 64.9% 0.788 0.457,1.358 0.391
AA vs GG 0.075 61.3% 0.735 0.422,1.283 0.279

15731236 Overall
GvsA 0.735 0.0% 1.110 0.987,1.248 0.082
GG + AG vs AA 0.355 9.7% 1.167 1.001, 1.361 0.048
GG vs AG + AA 0.846 0.0% 1.068 0.823,1.385 0.620
GG vs AA 0.690 0.0% 1.205 0.909, 1.598 0.195

157975232  Overall
Cvs A 0.031 62.3% 1.015 0.845,1.220 0.872
CC + ACvs AA 0.217 30.7% 1.127 0.949,1.339 0.174
CCvs AC + AA 0.051 57.6% 0.901 0.658,1.234 0.516
CC vs AA 0.000 98.6% 0.513 0.059, 4.477 0.546

151544410 Overall
TvsC 0.378 6.0% 0.999 0.842,1.185 0.989
TT + CT vs CC 0.251 24.4% 0.937 0.758,1.159 0.550
TT vs CT + CC 0.960 0.0% 1.232  0.839,1.808 0.288
TT vs CC 0.931 0.0% 1.157 0.757,1.766 0.501

and 1570 controls for rs2228570, 7 studies with 1881 PD cases and
2135 controls for rs731236, 5 studies with 1298 PD cases and 1536
controls for rs7975232, and 6 studies with 932 PD cases and 1377
controls for rs1544410 were included in this meta-analysis
[4-6,9,14,18,22,27,28]. Characteristics and genotype information of
included studies were summarized in Tables 1 and 2.

3.2. Meta-analysis of the VDR polymorphisms and the susceptibility of PD

Heterogeneity was found in the recessive genetic model for
rs2228570, allelic, recessive, and additive models for rs7975232, while
no obvious heterogeneity was found for rs731236 or rs1544410
(Table 3). The OR and 95% CI were calculated according to the values
of Pg and 12 (Fig. 2, Table 3).

VDR rs2228570 was significantly associated with decreased PD risk
in the allelic, dominant, and additive models (A vs G: OR = 0.843, 95%
CI: 0.757-0.939, P = 0.002; AA + GA vs GG: OR = 0.819, 95% CI:
0.705-0.951, P = 0.009; AA vs GG: OR = 0.704, 95% CI: 0.558, 0.887,
P = 0.003) but not in recessive model (AA vs GA + GG: OR = 0.739,
95% CI: 0.537-1.017, P = 0.063). Stratified analysis showed that VDR
152228570 was associated with decreased PD susceptibility in all four
models in Asian population, while no significant association was ob-
served in none of the four models in Caucasian population (Table 3).

VDR rs731236 was significantly associated with increased risk of PD
in dominant model (GG + AG vs AA: OR =1.167, 95% CI:
1.001-1.361, P =0.048). No significant association between
157975232 or rs1544410 and PD risk was found in any genetic model
(Table 3).
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Fig. 2. Forest plots for meta-analysis of VDR polymorphisms and risk of PD. (A) rs2228570. (B) rs731236. (C) rs7975232. (D) rs1544410.

3.3. Sensitivity and publication bias

Sensitivity analysis showed stable results for rs2228570 and
rs1544410. For rs731236, increased risk of PD was found in dominant
model, however, this result was unstable. After omission of study by
Tanaka K, Gezen-Ak D, Gatto NM, Torok R or Liu HX, on remarkable
association was found. The results for rs7975232 were unstable either
(Fig. 3). No significant publication bias existed (Table 4), indicating
reliable results for rs2228570 and rs1544410 in this meta-analysis.

4. Discussion

Vitamin D is an essential secosteroid involved the regulation of
brain activity. Several studies reported the association between serum
vitamin D level and the risk of PD, but the conclusion was ambiguous
[15]. Sleeman I found that PD patients had lower serum vitamin D level
than age-matched controls [24]. Ozturk EA also indicated the osteo-
porosis risk in PD due to the low vitamin D level [21]. Kim JE observed
olfactory dysfunction in PD patients, and these patients showed low
serum vitamin D level. Vitamin D level was suspected to be an in-
dependent factor of olfactory dysfunction in PD [8]. Luthra NS char-
acterized vitamin D supplementation and the clinical outcome in early
PD within a large cohort of 1741 participants. They found that vitamin
D supplementation did not affect PD progression [16], which was
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consistent with other studies by Larsson SC [10]. Further studies with
larger sample size and different ethnic population may be needed to
accurately evaluate this association between vitamin D level and PD
risk.

VDR rs2228570 polymorphism A allele was associated with de-
creased risk of PD. Significant association between rs2228570 and de-
creased PD risk was found in dominant and addictive models but not in
recessive model. Moreover, rs2228570 was associated with decreased
PD risk in Asian population in all four genetic models, while no re-
markable association was observed in Caucasian population.

3 recent meta-analysis studies investigated the association between
VDR 152228570 polymorphism and PD [12,13,20], however, their re-
sults were duplicated and based on only 2 studies. Han X reported that
the frequency of rs2228570/G allele was significantly increased in PD
group in Chinese population [6]. Torok R also reported similar results
in Hungarians [28]. Gezen-Ak D found that A allele carriers for VDR
152228570 were more frequent in patients with advanced-stage PD [5].
However, no significant association was reported by Gatto NM and
Kang SY [4,7]. Tanaka K found significant inverse association between
VDR 152228570 and PD risk under the additive genetic model, but it fell
below significance after adjustment for multiple comparisons [27].

Some factors may contribute to the differences among studies for
rs2228570. Only in the study by Tanaka K, the male ratio was strictly
matched between PD (38.4%) and Control (38.7%) groups. The male
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Fig. 3. Sensitivity analysis for meta-analysis of VDR polymorphisms and risk of PD. (A) rs2228570. (B) rs731236. (C) rs7975232. (D) rs1544410.

ratio in PD and Control groups in the studies by Kang SY, Gatto NM,
Torok R, and Han X were 43.80% vs 55.8%, 55.80% vs 50.1%, 44% vs
49%, 63.87% vs 56.14% respectively. In an exploratory study by Savica
R indicated that risk factors for PD differed in men and women [23].
Moreover, the classification of early-onset PD (EOPD) and late-onset PD
patients (LOPD) were different among studies. The cut-off value of age
was 50 years old by Han X and Gezen-Ak D, while this value was 60
years old in the study by Torok R and Kang SY. In the studies by Gatto
NM and Gezen-Ak D, some PD cases with family history were included.
Furthermore, 25-OH vitamin D3 level was not detected and adjusted in
all studies. Only in the study by Kang SY, the P value was adjusted by
25-OH vitamin D3 level. Ethnicity may also contribute to this differ-
ence. Significant association was only found in Asian population but not
Caucasian population. Finally, the genotyping method maybe also need
attention. Significant association was found by Han X and Torok R, and
PCR-RFLP was used in the two studies. In the remaining four studies
without significant association was detected by TagMan. The differ-
ences between Asian and Caucasian populations may be caused by
ethnicity. The male ratio, sample size, mean age, and MAF between
Asian and Caucasian populations were similar as showed in the in-
cluded 6 studies for rs2228570.

For rs731236, only significant association was found in dominant
model. However, this result was unstable, after omitting any of the
studies by Tanaka K, Gezen-Ak D, Gatto NM, Torok R or Liu HX,
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indicated by sensitivity analysis. Among the included 7 studies for
15731236, only the study by Gatto NM showed positive association. For
157975232 and rs1544410, no significant association was found in any
genetic model. Only 5 studies were included for rs7975232. Only the
study by Kim JS reported positive association for rs1544410. Sensitivity
analysis showed stable result for rs1544410.

Some limitations still existed in the current meta-analysis. First, the
sample size was still small. Second, the stratified analysis was per-
formed only by ethnicity, without considering other factors including
25-OH vitamin D3 level, gender, EOPD/LOPD. Third, only 3 studies
were analyzed for Asian and Caucasian population respectively in
subgroup analysis. All of these limitations may lead to bias in our re-
sults.

In conclusion, our meta-analysis suggested that VDR rs2228570 was
significantly associated with PD in Asian population but not Caucasian
population. VDR rs1544410 was not associated with PD. However, fu-
ture studies with larger sample size, gene-gene and gene-environment
interaction, different ethnic populations will be needed to provide a
more reliable evaluation of associations between VDR polymorphisms
and the susceptibility of PD.

Conflict of interest

The authors have no conflict of interest to declare.



X. Wang, et al.

Table 4
Publication bias analysis of the meta-analysis.
Test t (95% CI) P value
152228570 A vs G Begg's Test 0.060
Egger's test —1.67 (—9.266, 2.297) 0.170
AA + GA vs GG Begg's Test 0.133
Egger's test —1.42 (—4.492, 1.448) 0.228
AA vs GA + GG Begg's Test 0.260
Egger's test —2.36 (—11.912, 0.959) 0.077
AA vs GG Begg's Test 0.133
Egger's test —2.19 (—11.022, 1.289) 0.093
15731236 GvsA Begg's Test 0.764
Egger's test —0.97 (—3.728, 1.687) 0.377
GG + AG vs AA  Begg's Test 0.764
Egger's test —0.92 (—7.420, 3.514) 0.401
GG vs AG + AA  Begg's Test 0.462
Egger's test  0.15 (—2.919, 3.207) 0.890
GG vs AA Begg's Test 1.000
Egger's test  —0.25 (—4.409, 3.771) 0.820
17975232 Cvs A Begg's Test 0.806
Egger's test  0.18 (—21.348, 23.925)  0.868
CC + ACvs AA  Begg's Test 0.806
Egger's test —0.60 (—9.974, 6.800) 0.590
CCvs AC + AA  Begg's Test 1.000
Egger's test  0.21 (—10.489, 11.973) 0.847
CC vs AA Begg's Test 0.806
Egger's test  0.15 (—95.868, 105.04)  0.894
151544410 TvsC Begg's Test 0.707
Egger's test  —1.01 (—6.402, 2.979) 0.368
TT + CT vs CC Begg's Test 0.452
Egger's test —1.61 (—8.677, 2.300) 0.182
TT vs CT + CC Begg's Test 0.707
Egger's test  2.16 (—0.183, 1.464) 0.097
TT vs CC Begg's Test 0.707
Egger's test  1.91 (—0.339, 1.840) 0.128
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