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Purpose: This study aimed to assess the causal relationships between vitamin D 
levels and ocular disorders.

Methods: Independent genetic variables were obtained from genome-wide 
association studies (GWAS) and publicly available databases. The summary 
statistics for 25-hydroxyvitamin D (25(OH)D) were obtained from two large-scale 
GWAS studies, with sample sizes of 324,105 and 417,580 European individuals. 
The genetic variants of myopia, primary open angle glaucoma (POAG), anterior 
iridocyclitis, senile cataract, diabetic retinopathy (DR), retinal vein occlusion 
(RVO), wet age-related macular degeneration (WAMD) and optic neuritis were 
extracted from the latest release of FinnGen consortium, which contains genome 
data from Finnish participants. Subsequently, Mendelian randomization (MR) 
analyses were conducted to obtain effect estimates. Additionally, we performed 
multivariable MR analysis and mediation analysis to validate the results.

Results: In the discovery dataset, genetically predicted vitamin D concentration 
was found to be causally associated with an increased risk of WAMD, (odd ratio 
(OR)  =  1.35, 95% confidence interval (CI)  =  1.09–1.67, PIVW  =  0.005). However, 
no causal effects of genetically predisposed vitamin D levels on the risk of 
most types of ocular disorders were observed. Reverse MR revealed no causal 
relationships between the ocular diseases and vitamin D concentrations. The 
MR analyses of the validation dataset yielded consistent results. Additionally, the 
causal effect of vitamin D levels on the risk of WAMD remained significant after 
adjusting for potential confounders in the multivariable MR analysis (OR  =  1.86, 
95% CI  =  1.26–2.73, PIVW =  0.002).

Conclusion: Our MR analysis results provide robust evidence of a causal 
relationship between genetically predicted 25(OH)D levels and an increased risk 
of WAMD in European population. These findings offer important insights into 
the management and control of ocular disorders.
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Introduction

Vitamin D, a fat-soluble vitamin, plays a crucial role in various 
biological pathways, including immune regulation, cell growth, 
inhibition of apoptosis and anti-angiogenesis (1, 2). Additionally, vitamin 
D is involved in maintaining endothelial cell function and exhibits anti-
inflammatory effects in multiple autoimmune diseases (3, 4). Sunlight 
exposure is recognized as the primary source of endogenous synthesis of 
vitamin D3  in individuals (5). Dietary intake and supplements also 
contribute to the formation of vitamin D3 and vitamin D2. Both vitamin 
D3 and vitamin D2 undergo hydroxylation in the liver, converting them 
into 25-hydroxyvitamin D (25(OH)D). The serum level of 25(OH)D, 
which reflects skin production, dietary intake and supplementation, is 
considered as a reliable biomarker of vitamin D status (6).

In recent years, the mechanisms and associated pathogenesis of 
vitamin D in ocular diseases have attracted increasing attention 
worldwide. Extensive studies have explored the relationships between 
vitamin D and ocular disorders, spanning from the anterior segment 
to fundus (7). Myopia, a refractive error with rapidly increasing 
prevalence over the world, has been the subject of investigations (8, 
9). A cohort study conducted in Western Australia demonstrated 
significantly reduced vitamin D levels in myopic individuals compared 
to nonmyopic populations, after the adjusting for confounding factors 
(10). Similarly, evidence from a large-scale epidemiological study on 
6-year-old children suggests that decreased serum concentrations of 
25(OH)D is closely associated with higher axial length and an 
increased risk of myopia (11). However, it is worth noting that Li and 
colleagues found no association between 25(OH)D levels and myopia 
in Chinese children and adolescents (12).

Diabetic retinopathy (DR), the most common ocular complication 
of diabetes, can lead to irreversible blindness (13). Previous study had 
shown that serum levels of 25(OH)D were significantly elevated in 
individuals with DR compared to diabetes patients without ocular 
lesions (14). Decreased vitamin D concentrations could serve as a 
potential biomarker and predictive factor for DR. Furthermore, some 
scholars have reported a positive association between 25(OH)D levels 
and the severity of DR, while Alam and colleagues opposed this finding 
(15–17). Age-related macular degeneration (AMD), a chronic disease 
and growing public health burden in industrialized countries, has also 
been widely investigated (18). A large-scale multicenter study suggested 
no linear relationship between 25 (OH)D levels and early AMD or 
neovascular AMD (19). In addition, evidence from a randomized 
clinical trial manifested no effect of vitamin D3 supplementation on 
the incidence of AMD (20). Overall, the associations between 25(OH)
D and risk of ocular disorders remain controversial, due to the 
inevitable confounding bias of clinical investigations.

Mendelian randomization (MR) is a statistical approach used to 
examine causal relationships between exposure factors and outcomes. 
Since genes are randomly distributed in the process of inheritance, the 
relationship between risk factor and outcome will not be influenced by 
confounding factors. Taken the randomly assigned genetic variables 
during pregnancy into consideration, the direction of causal association 
can also be evaluated. Compared to conventional clinical trials, MR 
analysis could provide robust and potent evidence for causal inference. 
Therefore, the objective of this study was to comprehensively determine 
the causal relationship between serum vitamin D levels and ocular 
diseases. The findings of this study are expected to yield fresh insights 
and clinical implications for prevention and treatment strategies.

Methods

Study design

We conducted a comprehensive bidirectional MR analysis to 
explore the causal associations between vitamin D levels and ocular 
disorders. The present MR analysis was performed in accordance to 
the principles proposed by the STROBE-MR statement (21). Ethical 
approval and informed consent were not requested. To ensure robust 
and reliable results, the MR analysis should be conducted according 
to three basic assumptions: (1) the genetic variants as instrument 
variables (IVs) are associated with exposures strongly; (2) the IVs 
are not related to any potential confounders; and (3) the IVs affect 
the outcome only via exposure factors rather than other pathways 
and phenotypes. To minimize population stratification bias, the 
databases of exposures and outcomes were both from 
European population.

Data for vitamin D and ocular disorders

The summary data for 25(OH)D was derived form a recently 
published genome-wide association study (GWAS) dataset, including 
phenotype, genotype and clinical demographics (22). This 
comprehensive large-scale study contained a total of 324,105 European 
individuals with self-reported fair skin, from the United  Kingdom 
Biobank (UKB). To further identify the robustness of causality, 
we utilized another summary statistics for Vitamin D levels. This dataset 
contains 417,580 participants and body mass index (BMI) is considered 
as a covariate (23). The GWAS data for ocular disorders were collected 
from FinnGen research project, which is a public-private partnership 
aiming to analyze genome and health data from 500,000 Finnish 
biobank participants to understand disease mechanisms and 
predispositions (24). To ensure the reliability and completeness of the 
GWAS statistics, we extracted genetic variants from the latest data for 
various ocular diseases, including myopia (4,106 cases and 394,028 
controls), primary open angle glaucoma (POAG: 8,530 cases and 
391,275 controls), anterior iridocyclitis (7,152 cases and 405,029 
controls), senile cataract (65,235 cases and 341,546 controls), DR (10,413 
cases and 308,633 controls), retinal vein occlusion (RVO: 775 cases and 
308,633 controls), wet AMD (WAMD, 5,239 cases and 273,920 controls) 
and optic neuritis (1,295 cases and 409,190 controls). Detailed 
characteristics of the included GWAS databases are summarized in 
Table 1.

For the analysis, single nucleotide polymorphisms (SNPs) with 
genome-wide significance (p value <5 × 10−8), low linkage disequilibrium 
(r2  < 0.001) and a window size of 10,000 kb were selected when 
considering vitamin D levels as exposure. To investigate potential 
inverse relationships, we  conducted bidirectional MR analysis by 
selecting SNPs at the genome-wide threshold of p value <5 × 10−6 when 
considering ocular diseases as exposures. We also performed linkage 
disequilibrium analysis to ensure independence among SNPs (r2 < 0.01 
and clumping distance of 10,000 kb). Palindromic SNPs and SNPs with 
a minor allele frequency (MAF) less than 0.01 were excluded. 
Additionally, we  used the F-statistic to evaluate the strength of the 
instrumental variables and avoid weak instrument bias, calculated using 
the equation: F = Beta2/SE2 (25). SNPs with a F-value less than 10 were 
further eliminated.
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MR analysis and sensitivity analysis

The statistical analysis was conducted as depicted in Figure 1. After 
harmonizing the SNPs from exposures and outcomes, we employed the 
MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test to 
identify and correct for potential pleiotropy by eliminating outliers (26). 
The Cochrane Q test was employed to assess heterogeneity between 
different genetic variants. The fixed-effects inverse-variance weighted 
(IVW) model was applied as the main MR analysis approach, providing 
robust and unbiased estimates (27). In case of significant heterogeneity, 
the alternative random-effects IVW method was conducted. The 
weighted median (WM) approach offers accurate effects even when up 
to 50% genetic variables are invalid (28). The MR-Egger regression was 
employed to provide an unbiased effect even when the majority of 
genetic instrument variables are invalid (29). In addition, we utilized 
the intercept of the MR-Egger test to examine horizontal pleiotropy.

Multivariable MR (MVMR) is a novel method incorporating 
genetic variations for potential confounders or mediators into the 
same model (30). If univariable MR analysis indicated a causal 
relationship, MVMR analysis was employed to adjust for confounders, 
including type 2 diabetes, hypertension, C-reactive protein (CRP), 
cigarettes per day and alcoholic drinks per week (31–33). Considering 
the lipid-soluble nature of vitamin D, we  conducted mediation 
analysis using two-step MR to explore the potential mediating effects 
of high-density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C) and triglycerides on the causal 
relationships between vitamin D and ocular disorders. As presented 
in Table 1, the summary statistics of these phenotypes were obtained 
from the publicly available databases and large-scale GWAS studies.

All MR analyses were carried out by R-studio software (version 
4.3.1), using the “TwoSampleMR,” “MendelianRandomization” and 
“MRPRESSO” packages. Considering multiple tests between 
exposures and outcomes, a Bonferroni-corrected threshold of 
p < 0.05/8 was considered statistically significant.

Results

Forward MR analysis

Initially, we conducted the MR-PRESSO test to identify potential 
pleiotropy and eliminate outliers of the discovery dataset. After 
eliminating the outliers, a total of 60–66 SNPs were finally included 
for further analysis. All of the included instrumental variants 
exhibited an F-statistic greater than 10, indicating their strong 
instrumental strength. The results, as summarized in Table 2 and 
Figure  2, revealed no significant associations between vitamin D 
levels and risk of myopia (odd ratio (OR) = 1.13, 95% confidence 
interval (CI) = 0.90–1.40, PIVW  = 0.288), POAG (OR = 1.04, 95% 
CI = 0.86–1.26, PIVW = 0.665), anterior iridocyclitis (OR = 0.93, 95% 
CI = 0.78–1.12, PIVW  = 0.461), senile cataract (OR = 1.01, 95% 
CI = 0.93–1.09, PIVW = 0.869), DR (OR = 0.98, 95% CI = 0.82–1.17, 
PIVW = 0.813), RVO (OR = 1.34, 95% CI = 0.80–2.23, PIVW = 0.263) and 
optic neuritis (OR = 0.75, 95% CI = 0.50–1.13, PIVW = 0.169). However, 
a positive association was observed between genetically predicted 
vitamin D concentrations and an increased risk of WAMD (OR = 1.35, 
95% CI = 1.09–1.67, PIVW = 0.005). Similar trends were observed using 
WM and MR-Egger models, although statistical significance was not 

TABLE 1  Characteristics of GWAS databases.

Trait Resource Year Sample size Data download

Exposure

Vitamin D (Discovery) Wang et al 2023 324,105 participants DOI: 10.1371/journal.pgen.1011033

Vitamin D (Validation) Revez et al 2020 417,580 participants DOI: 10.1038/s41467-020-15421-7

HDL cholesterol UK Biobank 2020 403,943 participants gwas.mrcieu.ac.uk/datasets/ieu-b-109/

LDL cholesterol UK Biobank 2020 440,546 participants gwas.mrcieu.ac.uk/datasets/ieu-b-110/

Triglycerides UK Biobank 2020 441,016 participants gwas.mrcieu.ac.uk/datasets/ieu-b-111/

Type 2 diabetes Xue et al 2018 62,892 cases and 596,424 controls DOI: 10.1038/s41467-018-04951-w

Hypertension UK Biobank 2018 119,731 cases and 343,202 controls gwas.mrcieu.ac.uk/datasets/ukb-b-14057/

CRP Said et al 2022 1,002,898 participants DOI: 10.1038/s41467-022-29650-5

Cigarettes per day Liu et al 2019 337,334 participants DOI: 10.1038/s41588-018-0307-5

Alcoholic drinks per week Liu et al 2019 1,232,091 participants DOI: 10.1038/s41588-018-0307-5

Outcome

Myopia Finngen 2023 4,106 cases and 394,028 controls r10.finngen.fi/

POAG Finngen 2023 8,530 cases and 391,275 controls r10.finngen.fi/

Anterior iridocyclitis Finngen 2023 7,152 cases and 405,029 controls r10.finngen.fi/

Senile cataract Finngen 2023 65,235 cases and 341,546 controls r10.finngen.fi/

Diabetic retinopathy Finngen 2023 10,413 cases and 308,633 controls r9.finngen.fi/

Retinal vein occlusion Finngen 2023 775 cases and 308,633 controls r9.finngen.fi/

WAMD Finngen 2023 5,239 cases and 273,920 controls r10.finngen.fi/

Optic neuritis Finngen 2023 1,295 cases and 409,190 controls r10.finngen.fi/

GWAS, genome-wide association study; CRP, C-reactive protein; POAG, primary open angle glaucoma; WAMD, wet age-related degeneration.
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achieved. To validate these observations, we utilized another GWAS 
database for 25(OH)D. Outliers for anterior iridocyclitis (rs8107974), 
senile cataract (rs2229742) and DR (rs1260326) were identified and 
subsequently discarded. Employing the IVW method, a significant 
causal relationship was found between genetically assessed 25(OH)
D levels and a higher risk of WAMD (OR = 1.24, 95% CI = 1.00–1.53, 
PIVW  = 0.049). However, this causal association did not retain 
statistical significance after Bonferroni correction, suggesting 
potential causality. Consistently with discovery analyses, no causal 
relationships were identified between the remaining ocular disorders 
and vitamin D levels. The comprehensive results of different models 
were presented in Table 2 and Figure 3. The MR-Egger regression 
intercept test indicated the absence of horizontal pleiotropy in the 

forward MR analysis (Table  2). The details of SNPs, including rs 
number, effect allele, other allele, effect allele frequency, beta value, 
standard error, p-value and F-statistics were presented in 
Supplementary Table S1.

Reverse MR analysis, MVMR analysis, and 
mediation analysis

Moving on to the reverse MR analysis, after harmonizing and 
MR-PRESSO test, the detailed characteristics of genetic variants were 
listed in Supplementary Table S2. The F-value of each genetic variable 
exceeded 10, indicating the absence of weak instrument bias. To 

FIGURE 1

Flow chart of overall Mendelian randomization design.
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ensure the robustness and reliability of MR results, at least 5 SNPs 
were utilized for each exposure. In relation to the discovery and 
validation datasets of vitamin D, various MR methods revealed no 
causal links between ocular disorders and levels of 25(OH)D 
(Supplementary Figures S1, S2). No evidence of horizontal pleiotropy 
was discovered through the MR-Egger intercept, thus confirming the 
reliability of results obtained from the reverse analysis 
(Supplementary Table S3).

Furthermore, we  conducted MVMR analysis to assess the 
robustness of the significant causal relationship between vitamin D 
and WAMD. This analysis aimed to evaluate the potential effects of 
type 2 diabetes, hypertension, CRP, cigarettes per day and alcoholic 
drinks per week. The estimates from the discovery MVMR analysis 
revealed the causal association remained significant (Table  3, 
OR = 1.86, 95% CI = 1.26–2.73, PIVW = 0.002). Consistent results were 
also observed using the WM and MR-Egger models (p < 0.05) and the 
MVMR-Egger intercept test demonstrated the absence of horizontal 
pleiotropy (Egger intercept = 0.003, p  = 0.325). In the validation 
MVMR analysis, genetically determined 25(OH)D levels were found 
to be  not associated with the risk of WAMD, after adjusting for 
potential confounders. Additionally, using the lipid parameters as 
mediators, no significant mediation relationship was found 
(Supplementary Table S4).

Discussion

To the best of our knowledge, no prior studies have 
comprehensively explored the causal associations between vitamin D 
and 8 types of ocular disorders. Our fundings indicate that genetically 
determined 25(OH)D levels are associated with an increased risk of 

WAMD, which is further validated by MVMR analysis. Additionally, 
reverse MR analysis demonstrated no causal relationships between 
ocular diseases and 25(OH)D concentrations.

The most noteworthy finding emerging from this MR analysis is 
the causal effect of vitamin D on an increased risk of WAMD, which 
should be interpreted with caution. The mechanisms of AMD remain 
not fully understood, but there is a consensus that dysfunction of 
retinal pigment epithelium (RPE) plays an essential role. RPE is 
characterized as a pivotal component of blood retinal outer barrier, 
participating in the phagocytosis of photoreceptor outer segments and 
scavenging the damaged ROS (34). Multiple risk factors have been 
identified in the development of AMD, including age, smoking, 
genetic factors and sunlight exposure (35). Geographic position and 
insolation have been identified as essential factors in the prevalence of 
AMD, as demonstrated by meta-regression analysis (36). It has been 
shown that ultraviolet and blue light can lead to the damage of RPE 
cells (37–39). A case–control study found that sunlight exposure 
during working life could increase the risk of early and late AMD (40). 
Individuals born in summer were observed to have a higher season-
specific risk of neovascular AMD compared to those born in winter 
(41). Additionally, a study from the United States found a peak in 
25(OH)D concentrations in August and a trough in February (42). 
Since sunlight exposure is the main source of vitamin D, we infer that 
additional sunlight exposure may increase the risk of WAMD. As 
described in previous MR analyses, the serum lipid biomarkers, CRP 
levels, smoking and alcohol intake are causally associated with AMD 
(43–47). To account for the potential effects of these confounders, 
we  performed the MVMR and mediation analyses. The results 
indicated that the causal relationship remained significant after 
adjusting for confounders and no mediation effects of lipid parameters 
were observed, further validating the robustness of causal estimates.

TABLE 2  Mendelian randomization analyses between vitamin D levels and ocular disorders.

Exposure Outcome IVW Heterogeneity Pleiotropy

OR (95% CI) p value IVW Q p value Intercept p value

25(OH)D 

(Discovery)

Myopia 1.13 (0.90, 1.40) 0.288 76.78 0.131 0.005 0.398

POAG 1.04 (0.86, 1.26) 0.665 113.67 0.0001 0.007 0.173

AI 0.93 (0.78, 1.12) 0.461 87.28 0.028 −0.002 0.687

SC 1.01 (0.93, 1.09) 0.869 92.53 0.007 0.0009 0.711

DR 0.98 (0.82, 1.17) 0.813 104.42 0.0002 −0.006 0.267

RVO 1.34 (0.80, 2.23) 0.263 72.93 0.141 0.010 0.533

WAMD 1.35 (1.09, 1.67) 0.005* 75.85 0.081 −0.001 0.844

Optic neuritis 0.75 (0.50, 1.13) 0.169 83.72 0.059 0.019 0.103

25(OH)D 

(Validation)

Myopia 1.00 (0.80, 1.26) 0.984 138.46 0.011 −0.003 0.531

POAG 1.10 (0.92, 1.30) 0.293 157.90 0.0004 −0.0004 0.911

AI 0.92 (0.79, 1.08) 0.310 115.64 0.151 −0.004 0.335

SC 1.04 (0.96, 1.12) 0.365 152.01 0.0006 0.002 0.267

DR 1.04 (0.89, 1.23) 0.621 136.92 0.003 −0.002 0.627

RVO 1.27 (0.75, 2.14) 0.375 119.33 0.080 0.012 0.331

WAMD 1.24 (1.00, 1.53) 0.049* 134.99 0.009 0.001 0.845

Optic neuritis 0.83 (0.56, 1.21) 0.324 125.29 0.059 0.002 0.828

IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval; 25(OH)D, 25-hydroxyvitamin D; POAG, primary open angle glaucoma; AI, anterior iridocyclitis; SC, senile cataract; 
DR, diabetic retinopathy; RVO, retinal vein occlusion; WAMD, wet age-related degeneration.
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As widely acknowledged, cross-sectional studies cannot determine 
whether deficiency of vitamin D is the cause or result of diseases. In view 
of several unavoidable bias in clinical trials, the evidence from previous 
investigations for the relationships between vitamin D and risk of ocular 
diseases is controversial. From the perspective of genetics, we confirmed 
there were no causal links between vitamin D and other types of ocular 
disorders. A published MR analysis indicates vitamin D levels contribute 
little to the degree of myopia, while time spent outdoors is identified as 
an essential confounder (48). As previous reported, dopamine plays 
critical roles in the retina development and visual signaling (49). It has 
been suggested that time spent outdoors, resulting in sunlight exposure, 
prevents myopia through the dopamine-mediated pathway (50). 
Glaucoma, a leading cause of irreversible visual impairment, is 
characterized by the damage to optic nerve head and visual field (51). As 
previously reported, a decreased 25(OH)D concentration was associated 
with a higher risk of POAG (52, 53). The investigators speculate that the 
status of vitamin D deficiency may deteriorate the biological functions 
of optic nerve through oxidative stress pathway. A meta-analysis has 
manifested no significant difference in serum vitamin D levels between 
glaucoma patients and healthy controls, which is consistent with our 
genetic results (54). Further work is required to investigate the detailed 
mechanisms of vitamin D in various subtypes of glaucoma.

Prior meta-analyses have revealed positive correlations between 
vitamin D deficiency and a higher risk of non-infectious uveitis 

(55). Vitamin D has been demonstrated to paly vital roles in 
immune responses and gut microbiota composition (56). The 
deficiency of vitamin D may lead to immune dysregulation and 
imbalance of gut microbiota, potentially activating and accelerating 
the progression of uveitis. However, the majority of included studies 
in meta-analysis are designed as case–control and cross-sectional, 
limiting the robustness of results. Additionally, a two-sample MR 
analysis indicates positive causal effects of low vitamin D levels on 
the risk of uveitis (57). The GWAS information used in the present 
MR analysis was extracted from anterior iridocyclitis patients, so 
the discrepancy of MR results could be attribute to variations in 
characteristics among different GWAS databases. To elucidate the 
pathogenesis of vitamin D in cataract, a random controlled trial was 
performed in 23,315 older Australian adults (58). The authors 
found that high-dose routine vitamin D supplementation had no 
effect on the need for cataract surgery, which is in accordance with 
our MR results.

Retrospective studies reported no significant relationship 
between vitamin D status and DR after controlling for confounding 
factors (17, 59). The authors also found that majority of DR patients 
were lack of vitamin D, the association between degree of retinopathy 
and vitamin D could not be fully investigated. Regarding the RVO 
and optic neuritis, there remains a paucity of valid evidence. A case–
control study showed no differences in vitamin D levels between 

FIGURE 2

Forest plot for the causal effects of vitamin D (discovery dataset) on the risk of ocular disorders. SNP, single nucleotide polymorphism; 25(OH)D, 
25-hydroxyvitamin D; POAG, primary open angle glaucoma; WAMD, wet age-related degeneration; IVW, inverse variance weighted; 95%CI, 95% 
confidence interval.
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central RVO patients and healthy controls (60). In addition, data 
from a randomized and placebo-controlled trial demonstrated that 
oral supplementation of vitamin D had no significant effect on the 
thickness of retinal nerve fiber layer in optic neuritis patients (61). It 
is worthwhile to point out that the sample sizes of these studies are 
relatively small, longitudinal and prospective trials are warranted to 
elucidate our results in the future.

Some strengthens of this MR analysis are worth noting. First, the 
MR design ensures the strengthen of genetic variables, reducing the 
influence of potential confounders in observational studies and 
providing a robust estimate of causal associations. Second, the relatively 
large sample size in the MR analysis allows for reliable and accurate 
causal relationships. However, several certain limitations should 

be considered. First, the genetic instruments extracted from GWAS data 
are from European individuals, the results of this study may not 
be explainable in other populations and races. Additionally, despite 
employing various approaches to evaluate and adjust for possible 
confounding and pleiotropic effects, potential confounding factors could 
not be completely ruled out. Taken the complex biological pathways of 
Vitamin D into consideration, the results of MR analysis were acquired 
via the genetic pathway, which may only represent a specific perspective. 
Moreover, due to the limited demographics and characteristics of the 
GWAS data, performing subgroup analyses seemed challenging, 
limiting the comprehensiveness of the present MR analysis.

In conclusion, genetically predicted vitamin D was causally 
associated with an enhanced risk of WAMD in the European 

FIGURE 3

Forest plot for the causal estimates of vitamin D (validation dataset) on the risk of ocular disorders. SNP, single nucleotide polymorphism; 25(OH)D, 
25-hydroxyvitamin D; POAG, primary open angle glaucoma; WAMD, wet age-related degeneration; IVW, inverse variance weighted; 95%CI, 95% 
confidence interval.

TABLE 3  Multivariable MR on the causal associations between 25(OH)D levels and WAMD.

Exposure Outcome Number of SNPs Method OR (95% CI) p value

25(OH)D (Discovery) WAMD 227 IVW 1.86 (1.26, 2.73) 0.002

227 MR-Egger 1.85 (1.25, 2.73) 0.002

227 Weighted median 1.87 (1.20, 2.92) 0.006

25(OH)D (Validation) WAMD 238 IVW 1.11 (0.75, 1.65) 0.590

238 MR-Egger 1.11 (0.75, 1.63) 0.614

238 Weighted median 1.02 (0.63, 1.64) 0.943

25(OH)D, 25-hydroxyvitamin D; WAMD, wet age-related degeneration; OR, odds ratio; CI, confidence interval; IVW, inverse-variance weighted.
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population. Additionally, based on the current MR analysis, we found 
no convincing evidence of causal links between vitamin D 
concentrations and most types of ocular disorders. Our results provide 
novel insights into the prevention and management of ocular diseases. 
Further randomized controlled trials are needed to evaluate and 
confirm our findings in the future.
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