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Abstract: Diabetes mellitus is a global health problem and a major contributor to mortality and
morbidity. The management of this condition typically involves using oral antidiabetic medication,
insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However,
several human studies have indicated that a deficiency in micronutrients, such as zinc, can be
associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical
messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release,
and storage. These diverse functions make zinc an important trace element for the regulation of
blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing
diabetic complications. This review article explains the role of zinc in glucose metabolism and the
effects of its inadequacy on the development, progression, and complications of diabetes mellitus.
Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The
available information suggests that zinc has beneficial effects on the management of diabetic patients.
Although additional large-scale randomized clinical trials are needed to establish zinc’s clinical
utility further, efforts should be made to increase awareness of its potential benefits on human health
and disease.

Keywords: diabetes mellitus; insulin sensitivity; zinc deficiency; zinc supplementation; glycemic control

1. Introduction

Diabetes mellitus, which encompasses both type 1 and type 2 variants, is a metabolic
disease characterized by diverse clinical presentations and disease progression patterns.
Type 1 diabetes can be distinguished from type 2 diabetes by several characteristic features:
(1) type 1 diabetes typically manifests at an age less than 35 years; (2) individuals with
type 1 diabetes often have a BMI less than 25 kg/m?; (3) unintentional weight loss is
commonly observed in those with type 1 diabetes, without any prior attempt to reduce
weight; (4) at the time of presentation, individuals with type 1 diabetes may exhibit sig-
nificantly elevated blood glucose levels, exceeding 20 mmol/L (360 mg/dL); and (5) the
development of ketoacidosis, a life-threatening complication, is more common in individ-
uals with type 1 diabetes [1]. Clinically, over 80% of diabetes cases are identified as type
2 diabetes mellitus. The dysfunction and reduction in the mass of pancreatic 3-cells are
critical factors in the initiation and progression of type 2 diabetes mellitus (Figure 1). This
condition is also characterized by chronic hyperinsulinemia as a compensatory mechanism
for insulin resistance.

According to the diagnostic criteria established by the American Diabetes Associa-
tion, the following blood glucose parameters are considered for the diagnosis of diabetes
mellitus: fasting plasma glucose >126 mg/dL (7.0 mmol/L) and no caloric intake for
a minimum of 8 h. A plasma glucose level >200 mg/dL (11.1 mmol/L) was measured
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after a 75-g glucose load during an oral glucose tolerance test (OGTT). When HbAlc is
>6.5% (48 mmol/mol), the HbAlc test must be performed using a method certified by the
National Glycohemoglobin Standardization Program and standardized to the Diabetes Con-
trol and Complications Trial reference assay. A random plasma glucose level >200 mg/dL
(11.1 mmol/L) was detected in individuals who presented with classic symptoms of hy-
perglycemia or hyperglycemic crisis [2]. Importantly, these diagnostic criteria are based
on the measurement of plasma glucose or HbAlc, which serve as reliable indicators of the
presence and severity of diabetes mellitus. The standardization of these laboratory tests, as
specified by the guidelines, ensures the accuracy and consistency of the diagnostic process.
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Figure 1. Simplified diagram of the evolution of type 2 diabetes, where metabolic disturbances lead
to cellular stress, which damages insulin-producing 3-cells. This damage, in turn, exacerbates the
metabolic disturbances, creating a vicious cycle of disease progression.

Alterations in the levels of trace elements, such as zinc, and an increase in oxidative
stress, particularly in pancreatic 3-cells, have been observed in individuals with diabetes
mellitus. These imbalances can exacerbate insulin resistance in peripheral tissues such as
muscle, adipose tissues, and liver, worsening glycemic control and developing diabetic
complications. The progression of diabetes, in turn, can further deteriorate the overall
status of zinc and other trace elements [3]. Zinc is an essential trace element that functions
as a co-factor in the formation, storage, and release of insulin by the pancreas [4]. Reduced
levels of zinc can impair the pancreas’s ability to synthesize and secrete insulin and di-
minish the uptake of glucose by peripheral cells, leading to the development of insulin
resistance, a hallmark of diabetes mellitus [5]. The depletion of zinc observed in individ-
uals with diabetes mellitus is primarily attributed to two key mechanisms: (1) impaired
intestinal absorption of zinc (diabetes-associated gastrointestinal changes and alterations
in zinc transport mechanisms can lead to reduced intestinal absorption of this essential
micronutrient) and (2) increased urinary excretion of zinc (hyperglycemia and associated
metabolic disturbances in diabetes can result in increased urinary loss of zinc, further
exacerbating the deficiency) [4]. The interplay between trace element dysregulation and
the pathogenesis of diabetes mellitus highlights the importance of maintaining optimal
micronutrient status in the management of this chronic metabolic disorder. Addressing
these underlying nutritional imbalances may offer a promising avenue for improving
glycemic control and minimizing the risk of diabetic complications.

2. Objective of the Study and Methodology

This work aims to synthesize information from human and experimental studies to
understand better the relationship between diabetes mellitus and the essential trace element
zinc. Furthermore, this brief review describes the effects of zinc supplementation in the
management of type 2 diabetes. The information was collected by searching the literature
using databases such as Google Scholar, PubMed, and Scopus between November 2023
and February 2024. The keywords used to guide the search were ‘zinc in diabetes mellitus’,
‘zinc supplementation’, ‘zinc deficiency’, and ‘diabetic complications and zinc'.

By comprehensively analyzing the available evidence from both human and exper-
imental studies, the critical roles of zinc in glucose metabolism and the pathogenesis of
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diabetes mellitus have been elucidated. The findings also highlight the potential benefits of
zinc supplementation in managing type 2 diabetes and its associated complications. By
applying this knowledge, we can work towards better clinical outcomes and quality of life
for individuals with diabetes.

3. Sources of Zinc

Zinc is the second most abundant micronutrient found in nature after iron [6-9]. The
dietary sources of zinc include both animal- and plant-based foods. Meat, seafood, whole
grains, and oil seeds are the primary dietary sources of zinc [10]. The recommended
dietary allowance (RDA) for zinc is 11 mg/day for adult males and 8 mg/day for adult
females [11]. These amounts are considered adequate to support the activity of zinc-
dependent metalloenzymes and maintain overall health. However, meeting the daily
dietary need for zinc solely through food sources would require the consumption of
excessive amounts of protein, dietary fiber, and fat, leading to a surplus of caloric intake
and increased bowel movements due to the high fiber and fat content [10]. Some studies
have reported slightly higher serum levels of zinc in women than men, although this
difference is not always statistically significant [12].

The pharmacological dosage of zinc is considered to be more than 40 mg/day for
individuals 19 years of age and older [11]. The chelated zinc doses used in various studies
typically fall between 220 mg/day and 660 mg/day [13,14]. The forms of zinc commonly
used for oral administration include zinc sulfate, zinc gluconate, zinc picolinate, and zinc
citrate, as these forms are generally better absorbed than zinc oxide [15]. Consuming
protein, such as whey protein, along with oral zinc supplementation, can also enhance the
absorption of zinc [16].

4. Zinc Regulation

Zinc homeostasis is maintained through a combination of fractional absorption (approxi-
mately 20-40%) and excretion via the urine (0.5 mg/day) and intestine (1-3 mg/day) [17]. The
range of zinc consumption that helps maintain a balance in the body’s zinc status is typi-
cally between 14 and 30 mg/kg [18,19]. However, zinc homeostasis can be maintained even
with zinc intake as low as 2.8 mg/kg or as high as 40 mg/kg [18,19]. In response to such
extreme levels of zinc intake, the body’s homeostatic mechanisms adjust the absorption
and excretion of zinc to maintain adequate zinc status [20,21].

Zinc absorption primarily occurs in the small intestine [18]. The efficiency of zinc
absorption from the diet depends on the zinc content and the composition of the diet, with
aqueous zinc solutions being more efficiently absorbed in the fasted state (approximately
60-70%) than in the diet [18,22]. The average zinc absorption rate in humans is approx-
imately 33% [18,23]. The absorption of zinc is also influenced by the concentration and
status of zinc in the body [24]. During the digestive process, zinc is released as a free ion,
which then binds to endogenously secreted ligands, including peptides and amino acids,
metallothionein, histidine, and cysteine. These zinc—ligand complexes are transported
into the duodenal and jejunal enterocytes [22,25]. Specialized transporters, such as zinc
transporters (ZnTs) and ZIP transporters, facilitate the movement of zinc across the cell
membrane and into the portal circulation. Zinc is then transported to the liver and released
into the systemic circulation, primarily binding to plasma albumin (approximately 70%).
Changes in serum albumin levels can, therefore, alter the circulating levels of zinc [22,25,26].

The distribution and expression of ZnTs are regulated by the body’s zinc status [27].
ZnTs that mediate the efflux of zinc into intracellular vesicles or out of the cell can decrease
zinc availability within cells, whereas ZIP transporters that increase zinc uptake into cells
and release zinc from intracellular vesicles can increase zinc availability (Figure 2) [28]. The
expression and activity of these transporters are influenced by various factors, including
cytokines (IL-1f3, IFN-y, and IL-6), hormones (insulin), zinc deficiency, and excess zinc [29].
With respect to zinc supplementation, the expression of ZnT1 in the intestinal villi has
increased in animal studies [30,31]. It is currently understood that ZnT1 acts as a zinc
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exporter and regulates zinc homeostasis by facilitating the elimination or acquisition of
zinc in response to excess or deficiency, respectively [31].
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Figure 2. Cellular zinc homeostasis is maintained through the delicate interplay of three key protein
groups: metallothioneins (MTs), Zrt-like and Irt-like proteins (ZIPs), and zinc transporters (ZnTs).
The ZIP and ZnT families, which are specialized zinc transporter groups, coordinately regulate
the movement of zinc ions in and out of the cytoplasm. Metallothioneins play crucial roles by
binding them to zinc ions, serving as a zinc reserve, buffering zinc levels, and chelating excess zinc to
prevent toxicity.

5. Zinc and Inflammation

Zinc is a crucial micronutrient that plays a vital role in the proper function of the
immune system and the maintenance of overall health (Figure 3). It is essential for the
proliferation and differentiation of immune cells [32] and potentially reduces viral infec-
tions [33,34]. Zinc has been found to bind nearly three thousand different proteins in the
human body [35]. Many metalloenzymes require zinc for their regulatory and catalytic
functions [35,36]. Zinc also serves as an important signaling molecule within the immune
system and acts as a neuromodulator in synaptic vesicles. Several studies have indicated
that zinc deficiency may contribute to the development of chronic and metabolic diseases,
such as diabetes, neurodegenerative disorders, cancer, and intestinal diseases [6,37-42]. Ad-
equate levels of zinc are essential for maintaining oral health [43] and for various hormonal
functions [44]. Furthermore, zinc plays a role in lipid metabolism during obesity, often asso-
ciated with type 2 diabetes. Studies have shown that zinc status can influence lipid profiles,
the functionality of adipose tissue, adipokine production, and insulin sensitivity [45,46].
Earlier studies reported that zinc can exert insulin-like effects on adipocytes, influencing
adipogenesis and glucose metabolism, and that zinc may play a role in enhancing insulin
sensitivity in adipose tissues [47]. Zinc deficiency is a common clinical manifestation in
individuals with obesity, perhaps thereby exacerbating metabolic dysregulation. Zinc
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supplementation has been shown to improve lipid profiles and potentially minimize some
of the harmful consequences of obesity [48,49]. Obesity is frequently associated with lower
serum levels of zinc in both genders than in their lean counterparts. Noteworthy, although
childhood obesity is more common in boys than in girls, obesity becomes more common in
adult women than in their male counterparts [50].
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Figure 3. Zinc is an essential micronutrient that plays a critical role in human health by exert-
ing positive effects on immune system function, maintaining cellular homeostasis, and delaying
neurodegenerative and infectious diseases to maintain overall health and well-being.

Zinc has been shown to aid in the regeneration of the intestinal epithelium, increase
water and electrolyte absorption, increase the levels of brush border enzymes, and help the
immune system clear pathogens through modulation [51-53]. Zinc exerts anti-inflammatory
effects on human SW480 and HL-60 cell lines by inducing the expression of the A20
protein, an anti-inflammatory protein that suppresses the signaling pathways of Toll-like
receptors (TLR) and tumor necrosis factor receptor (TNFR), thereby inhibiting the NF-«B
pathway [54]. Studies conducted on ten normal healthy volunteers who consumed oral
zinc supplementation (45 mg zinc gluconate) for eight weeks revealed that the expression
of pro-inflammatory cytokines, such as TNF-« and IL-1f3, was downregulated owing to
the upregulation of the DNA-specific binding of A20 [55]. Zinc plays a role in hindering
pro-inflammatory pathways. It prevents the nuclear translocation of NF-«B, modulates IxB
kinase (which causes the phosphorylation of the NF-«B inhibitory protein), and inhibits
the activation of signal transducer and activator of transcription 3 (STAT3) mediated by
IL-6. Zinc also increases the level of cyclic guanosine monophosphate (cGMP) by inhibiting
cyclic nucleotide phosphodiesterase (PDE). Studies conducted on human peripheral blood
mononuclear cells (PBMCs) isolated from healthy donors have shown that an increase
in cGMP activates protein kinase A (PKA), which in turn inactivates NF-«xB and MAPK
signaling [56]. Additionally, zinc can bind to and inhibit the translocation of protein kinase
C to the cell membrane, indirectly inhibiting the activity of NF-«B, as shown in bone
marrow-derived macrophages from mice [57].

Zinc also promotes anti-inflammatory pathways. In vitro studies have shown that zinc
enhances the IL-2 signaling pathway by blocking MAP kinase phosphatases in the PTEN
and ERK 1/2 pathways. This action counteracts the function of the PI3K/Akt pathway.
Additionally, zinc aids in the movement and activity of Smad2 and Smad3 in the TGF-f3
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signaling pathway, and it promotes the phosphorylation and movement of STAT6 into the
nucleus via the IL-4 signaling pathway [38].

6. Zinc and Glucose Metabolism

Zinc plays a crucial role in the crystallization and signaling of insulin. Specifically,
zinc promotes the activation of the PI3K/Akt pathway, which is essential for glucose
metabolism [58]. As a cofactor, zinc has a critical function in the action of antioxidants and
the metabolism of carbohydrates [45,59]. This micronutrient also aids in the phosphoryla-
tion of the 3-subunit of the insulin receptor and the translocation of glucose transporter
4 (GLUT4) [60,61]. Importantly, insulin forms a hexameric structure by coupling with
two zinc ions, a process necessary for the maturation of insulin within the secretory gran-
ules of pancreatic 3-cells and the subsequent release of insulin [62,63] (Figure 4).
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Figure 4. Zinc homeostasis and pancreatic 3-cell: intracellular free cytosolic zinc can be imported
via ZIP transporters or released from metallothionein (MT) during cellular stress. It enters insulin
granules through ZnT8 to form crystalline insulin-zinc hexamers. Zinc also binds to metal-responsive
transcription factor-1 (MTF-1), which translocates to the nucleus to up-regulate gene expression of
MT. MT-Ox, oxidized MT; ROS, reactive oxygen species [62,63].

Pancreatic 3-cells express specific zinc carrier proteins that play crucial roles in insulin
secretion [64—66]. One such key protein is ZnT8, which is essential for the crystallization,
processing, storage, and secretion of insulin, as well as the overall metabolism of glu-
cose [67]. The ZnT8 transporter is responsible for shuttling zinc into the secretory granules
of pancreatic (3-cells, thereby facilitating the formation of the zinc-insulin hexamer, a critical
step in insulin maturation and release [67-70]. Zinc deficiency leads to a reduction in the
expression of ZnT8§, ultimately impairing insulin secretion. In addition to ZnT8, other zinc
transporter proteins, such as ZnT6 and ZnT5, are involved in the transport of zinc into
the vesicles of pancreatic (3-cells, where micronutrients participate in the metabolism of
proinsulin and the subsequent secretion of mature insulin [62,67,71]. Furthermore, the zinc
transporter protein ZnT7 is responsible for transporting zinc to the Golgi apparatus of
pancreatic (3-cells, an essential process for the proper formation of insulin [71,72].

Single nucleotide polymorphisms (SNPs) in the ZnT8 (SLC30A8) gene, particularly
rs13266634, are associated with an increased risk of type 2 diabetes across various studied
populations. The ZnT8 transporter is present in pancreatic 3-cells and plays a crucial role
in insulin production and release by relocating zinc into insulin-containing granules within
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these cells. The rs13266634 variant, along with other SNPs in this gene, can alter ZnT8
transporter functions to contribute to an increased risk of developing type 2 diabetes [73,74].

Zinc plays a crucial role in promoting glucose transport into cells. Specifically, zinc
deactivates the enzyme tyrosine phosphatase 1B (PTP1B), which subsequently dephos-
phorylates the B-subunit of the insulin receptor, thereby preventing insulin signaling.
Zinc also inhibits the enzyme tensin homolog (PTEN), which normally dephosphorylates
phosphatidylinositol triphosphate and inhibits the Akt signaling pathway of insulin. By
inhibiting PTEN, zinc induces the activity of Akt and PI3K, enhancing the responsiveness
of insulin-regulated aminopeptidase (IRAP) and promoting the translocation of GLUT4 to
the cell membrane in muscle and adipose tissue [61,71,75].

In addition to its role in glucose transport, zinc enhances glucose storage. Zinc stimu-
lates the phosphorylation of glycogen synthase kinase 3 (GSK3) and the transcription factor
forkhead box protein O1 (FoxO1). Phosphorylation of GSK3 promotes the activation of
glycogen synthase, whereas phosphorylation of FoxO1 prevents it from stimulating the ex-
pression of gluconeogenic genes. Collectively, these actions of zinc help promote glycogen
storage and inhibit glucose production [61,76]. Zinc promotes the uptake of glucose by cells,
induces the expression of glucose transporter genes (GLUT1 and GLUT4), and regulates
gluconeogenic enzymes such as glucose-6-phosphatase (G6Pase) and phosphoenolpyru-
vate carboxykinase (PEPCK), thereby improving glucose metabolism [5]. Consequently,
zinc deficiency can lead to disturbances in glucose metabolism, potentially contributing
to the development of diabetes mellitus. Conversely, hyperglycemia may interfere with
the active transport of zinc into renal tubular cells, resulting in increased urinary zinc
excretion [77]. Zinc deficiency in individuals with diabetes mellitus may also exacerbate
chronic conditions, including diabetic polyneuropathy [78].

7. Zinc Deficiency and Diabetes: Experimental Studies

A significant increase in glucose levels was detected in streptozotocin-induced diabetic
rats fed a zinc-deficient diet. These rats also presented with an increase in malondialdehyde,
transaminase, triglyceride, and cholesterol. Additionally, the zinc levels in tissues such
as the liver, pancreas, and femur decreased, whereas the activities of catalase, amylase,
superoxide dismutase, glutathione-S-transferase, and lactate dehydrogenase decreased.
The concentration of glutathione, a potent antioxidant, also decreased in diabetic rats fed a
zinc-deficient diet [79].

In a separate study, diabetic rats fed a zinc-deficient diet for four weeks experienced
further reductions in serum zinc levels, as well as decreases in testosterone and plasma
insulin levels. The diabetic rats fed a zinc-deficient diet also presented increased triglyceride,
cholesterol, and HbAlc levels. A zinc-deficient diet increased oxidative stress, as evidenced
by a reduction in catalase, superoxide dismutase, and glutathione levels [80]. The study
also reported changes in the levels of transcription factors (MTF-1, NF-«B) and enzymes
(GPX4, GPX5), along with MT, a metal-binding protein, and Keap1, a regulatory protein that
interacts with the transcription factor Nrf2, in the epididymides and testes of diabetic rats.
Histopathological changes and abnormal alterations in sperm head morphology, sperm
chromatin, protamine, and sperm decondensation were observed. The study concluded
that zinc deficiency exacerbated the damage to germ cells in type 2 diabetes mellitus [80].
Another animal study by Sahu et al. investigated the role of zinc deficiency in the Bisphenol
A (BPA)-induced toxicity of male germ cells and gonads in diabetic subjects. They reported
that zinc deficiency in diabetic rats exacerbated BPA-induced toxicity in the epididymis and
testes, as evidenced by structural damage, increased sperm abnormalities, DNA damage,
and hypogonadism, compared with those in diabetic rats without zinc deficiency [81].

Researchers have reported widening Bowman's space, thickening of the basement
membrane, and loss of patches of apical microvilli in the proximal convoluted tubules in
diabetic rats fed a standard diet. These changes were further aggravated, and degeneration
was more extensive in diabetic rats fed a zinc-deficient diet, with a thickened cellular
lining of both the proximal and distal tubules, swollen mitochondria, and the presence
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of secondary lysosomes (fusion of primary lysosomes with phagosomes). In contrast, the
diabetic rats fed the zinc-supplemented diet presented minimal renal cortical changes.
The expression of caspase-3, a mediator of cell apoptosis, was significantly higher in
diabetic rats fed a standard diet and diabetic rats fed a zinc-deficient diet. Researchers have
concluded that zinc deficiency exacerbates renal cortical structural alterations in diabetic
rats [82]. Other similar studies have reported histological alterations due to zinc deficiency
in diabetes, including interstitial fibrosis from excess collagen deposition, damage to
endothelial cells, and the formation of hyaline masses [83—-89]. Several other studies have
shown that zinc deficiency can damage various organs, such as the retina, bone, liver, and
pancreas, in the context of diabetes [83,86,90,91].

8. Zinc Deficiency and Diabetes: Clinical Studies

A cross-sectional study conducted in Riyadh, Saudi Arabia, between May 2014 and
June 2015, involving 200 individuals with type 2 diabetes mellitus and 192 nondiabetic
controls, revealed significantly lower mean serum zinc levels in diabetic individuals
[66.54 £ 11.328 pug/dL) than nondiabetic individuals (82.63 £ 12.194 pg/dL, p < 0.001).
Among the patients with diabetes mellitus, those with lower zinc levels had higher HbAlc
levels (8.91 & 2.16%) than those with normal zinc levels (5.696 & 2.3, p < 0.001). The study
considered normal zinc levels to be >70 ug/dL. A negative correlation (Pearson correlation
coefficient ‘r’ = —0.527) was reported between serum zinc levels and fasting blood glucose
and between serum zinc levels and HbAlc. The study concluded that low zinc levels were
associated with type 2 diabetes mellitus and that zinc levels were negatively correlated
with poor glycemic control [4].

Other studies, such as those conducted by Santa et al. [92], Sahria and Goswami [93],
and Al-Maroof and Al-Sharbatti [94], have also reported significantly lower zinc levels
in patients with diabetes than in healthy individuals (p < 0.001). The lower zinc levels
observed in type 2 diabetic patients have been attributed to a decrease in zinc absorption
from the gastrointestinal tract and an increase in urinary zinc excretion, as suggested by
Marchesini et al. [95]. Several studies have reported a significant negative correlation
between HbAlc and serum zinc levels in individuals with diabetes. Tripathy et al. reported
a correlation ‘r’ = —0.408, indicating that higher HbAlc levels were associated with lower
serum zinc concentrations. They also reported significantly lower zinc levels in diabetic
individuals than nondiabetic individuals [77]. A similar negative association between zinc
levels and HbAlc (‘r” = —0.33) was noted by Al-Maroof and Al-Sharbatti [94]. Zinc defi-
ciency may contribute to the development of diabetic complications, as zinc deficiency can
exacerbate inflammation and ultimately lead to organ damage [78] (Figure 5). Human stud-
ies have reported the detrimental effects of zinc deficiency on various systems, including
the nervous, renal, and reproductive systems. Hussein et al. conducted a study on 120 sub-
jects, including 40 individuals with diabetic polyneuropathy, 40 diabetic subjects without
polyneuropathy, and 40 healthy controls. They reported significantly lower zinc levels in
individuals with and without neuropathy than in healthy subjects (p = 0.025 and p = 0.03,
respectively) [78]. A significant negative association was also observed between serum
zinc levels and the neuropathy symptom and change (NSC) score, Michigan neuropathy
screening instrument (MNSI) score, and HbAlc level (p = 0.001, p = 0.003, and p < 0.001,
respectively). Additionally, a significant association was found between serum zinc levels
and nerve conduction [78]. Migdalis et al. suggested that zinc deficiency may lead to
lipid peroxidation, which could result in the development of neuropathy in patients with
diabetes [96].
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9. Zinc Intervention and Diabetes: Clinical Outcome Studies

Zinc supplementation may aid in managing various clinical features of type 2 diabetes,
including insulin resistance, hyperglycemia, and dyslipidemia [97]. Individuals with
type 2 diabetes often exhibit hyperzincuria, hypozincemia, and impaired zinc absorption,
leading to reduced zinc availability for the brain and increased production of inflammatory
markers. This pro-inflammatory environment can also increase the susceptibility of these
individuals to microbial infections [98,99].

Several animal and human studies have reported that zinc supplementation can im-
prove fasting blood glucose levels, fasting insulin levels, and lipid profiles in type 1 and type
2 diabetes patients [95,100-115]. However, study results are not always consistent [116-120].
For instance, Foster et al. [116] found no significant improvements in lipid profiling with
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zinc supplementation in diabetic subjects, whereas a meta-analysis by Jayawardena et al.
reported that zinc supplementation in individuals with diabetes led to improvements in
glycemic control, blood pressure, and lipid profiles [114]. The studies utilized a wide
range of zinc dosages, from 7.5 to 660 mg/day, with follow-up periods ranging from three
weeks to six months. In a meta-analysis of 1700 participants from 32 interventional stud-
ies, zinc supplementation significantly reduced fasting glucose levels, with a weighted
mean difference of —14.15 mg/dL [121]. Furthermore, supplementation reduced 2-h
postprandial glucose levels by —36.85 mg/dL. The analysis also revealed decreases in
fasting insulin and HbAlc levels, indicating improved glycemic control in individuals
with diabetes [121]. The various zinc compounds used for supplementation include zinc
chloride [118], zinc gluconate [119,120], zinc acetate [109,110], zinc phosphate, and zinc
sulfate [95,101-108,111-113,115,122]. Zinc gluconate and zinc acetate are preferred for their
good absorption and lower risk of digestive discomfort, making them suitable for gen-
eral supplementation, whereas zinc sulfate is effective for treating deficiencies but may
cause gastrointestinal issues. Zinc chloride and zinc phosphate have more specialized uses
(dental applications and preservatives) and are less common in dietary supplementation.
Choosing the right form of zinc compound depends on individual health needs, tolerance,
and specific applications [15].

Notably, some studies have used zinc doses exceeding the recommended upper limit
of 40 mg/day [106,107,110,112,113,115,119,120]. Such high-dose zinc supplementation may
lead to copper deficiency and adversely affect the activity of antioxidant enzymes such as
superoxide dismutase [123]. Additionally, zinc doses >150 mg/day may impair immune
function [124,125]. Zinc supplementation can also cause iron deficiency in women with
low iron stores [126]. A separate meta-analysis by Jafarnejad et al. suggested that a zinc
dose of 20 mg/day may be optimal for improving metabolic parameters in individuals
with diabetes [124]. The effects of zinc on diabetes mellitus are dose-dependent, with
appropriate supplementation showing promise in improving glycemic control and insulin
sensitivity. However, careful monitoring of zinc intake is necessary to avoid toxicity and
maintain optimal metabolic health [127]. Despite our best efforts to present an unbiased
summary of the role of zinc in diabetes, our reliance on available sources, which are not
always derived from large cohort studies, could influence the objectivity of part of our
conclusions. Most existing studies focus on the short-term effects of zinc supplementation.
To fully understand its impact, it is also necessary to investigate the long-term effects.
Further clinical and experimental studies are required to establish guidelines for optimal
zinc supplementation in diabetes care.

10. Conclusions

Human and experimental studies have consistently demonstrated the beneficial role
of zinc in the context of diabetes mellitus. Zinc plays a significant role in the proper func-
tioning of 3-cells, the action of insulin, and the homeostasis of glucose. Conversely, zinc
deficiency can dysregulate glucose metabolism through the disruption of 3-cell function, as
well as the induction of oxidative stress and inflammation. Clinical studies have shown the
positive impact of zinc supplementation on glycemic control in individuals with diabetes
mellitus. Still, more large-scale randomized clinical trials with longer durations are needed
to establish the safety and effectiveness of various forms of zinc supplementation in diabetic
patients. Furthermore, efforts should be made to raise awareness among healthcare profes-
sionals regarding the benefits of a diet rich in micronutrients and adequate macronutrient
intake. Promoting the consumption of a high-quality, micronutrient-dense diet may help
reduce the development of inflammatory disorders among diabetic patients.

In summary, the available evidence strongly supports the critical role of zinc in glu-
cose metabolism and the pathogenesis of diabetes mellitus. Addressing zinc and other
essential mineral deficiencies through supplementation and dietary interventions may offer
a promising avenue for the holistic management of this prevalent metabolic disorder and
its complications [48,49,128,129].
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